期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
2005--2014年CHINET中国细菌耐药性监测网5种重要临床分离菌的耐药性变迁 被引量:434
1
作者 f.-p.hu y.guo +39 位作者 d.-m.zhu f.wang x.-f.jiang y.-c.xu x.-j.zhang c.-x.zhang p.ji y.xie m.kang c.-q.wang a.-m.wang y.-h.xu j.-l.shen z.-y.sun z.-j.chen y.-x.ni j.-y.sun y.-z.chu s.-f.tian z.-d.hu j.-li y.-s.yu j.lin b.shan y.du y.han s.guo l.-h.wei l.wu h.zhang j.kong y.-j.hu x.-m.ai c.zhuo d.-h.su q.yang b.jia w.huang 胡付品(译) 汪复 《中国感染与化疗杂志》 CAS CSCD 北大核心 2017年第1期93-99,共7页
目的收集并分析CHINET中国细菌耐药性监测网中5种重要临床分离菌的耐药性变迁。方法采用纸片扩散法或自动化仪器法按统一方案进行药物敏感性试验。按CLSI 2014年版标准判断结果。结果 2005—2014年,每年的临床分离菌数量为22 774~84 57... 目的收集并分析CHINET中国细菌耐药性监测网中5种重要临床分离菌的耐药性变迁。方法采用纸片扩散法或自动化仪器法按统一方案进行药物敏感性试验。按CLSI 2014年版标准判断结果。结果 2005—2014年,每年的临床分离菌数量为22 774~84 572株。大肠埃希菌中产ESBL菌株检出率为51.7%~55.8%。在上述时期内大肠埃希菌和肺炎克雷伯菌对阿米卡星、环丙沙星、哌拉西林-他唑巴坦和头孢哌酮-舒巴坦的耐药率有所下降。肺炎克雷伯菌中碳青霉烯类耐药株由2.4%上升至13.4%。铜绿假单胞菌对包括亚胺培南和美罗培南的所有受试抗菌药物的耐药率均有所下降。鲍曼不动杆菌对碳青霉烯类的耐药率由31.0%逐步上升至66.7%。耐甲氧西林金黄色葡萄球菌的检出率由2005年的69%逐年下降至2014年的44.6%。结论国内肺炎克雷伯菌和鲍曼不动杆菌对碳青霉烯类的耐药率高。上述结果显示细菌耐药性监测对于细菌感染的有效治疗十分重要。 展开更多
关键词 抗菌药物耐药性 碳青霉烯类 CHINET细菌耐药性监测 鲍曼不动杆菌 大肠埃希菌 肺炎克雷伯菌 铜绿假单胞菌 金黄色葡萄球菌
下载PDF
Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement,ordinary Portland cement,and calcium sulfate 被引量:6
2
作者 H.Yu l.wu +1 位作者 W.V.Liu Y.Pourrahimian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期212-221,共10页
The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction... The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement(CSA), ordinary Portland cement(OPC), and calcium sulfate(CS) to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength(UCS), splitting tensile strength(STS), and volume change of fiber-added expansive mixtures were determined at different time periods(i.e. the strengths on the 28 th day, and the volume changes on the 1 st, 7 th, 14 th, 21 st, and 28 th days). The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion. 展开更多
关键词 SHOTCRETE Restrained expansion Fibers Calcium sulfoaluminate cement(CSA) Ordinary Portland cement(OPC) Calcium sulfate(CS)
下载PDF
Development of Ultrasensitive Piezoresistive Strain Sensors Made from Carbon Nanofiller/Epoxy Nanocomposites
3
作者 N.Hu Y.Liu +1 位作者 H.Ning l.wu 《功能材料信息》 2016年第5期37-37,共1页
In this work,firstly,based on effectivemulti-scale numerical modeling and simulations,three possible mechanisms of piezoresistivity inpolymer nanocomposites with carbon nanofiller(CNF,e.g.,carbon nanotube and carbon n... In this work,firstly,based on effectivemulti-scale numerical modeling and simulations,three possible mechanisms of piezoresistivity inpolymer nanocomposites with carbon nanofiller(CNF,e.g.,carbon nanotube and carbon nanofi-ber),i.e.,1)variation of conductive networksformed by CNFs;2)tunneling resistance changein neighboring CNFs and 3)piezoresistivity 展开更多
关键词 英语 阅读 理解 复合材料
下载PDF
STCF conceptual design report (Volume 1): Physics & detector 被引量:2
4
作者 M.Achasov X.C.Ai +457 位作者 L.P.An R.Aliberti Q.An X.Z.Bai Y.Bai O.Bakina A.Barnyakov V.Blinov V.Bobrovnikov D.Bodrov A.Bogomyagkov A.Bondar I.Boyko Z.H.Bu F.M.Cai H.Cai J.J.Cao Q.H.Cao X.Cao Z.Cao Q.Chang K.T.Chao D.Y.Chen H.Chen H.X.Chen J.F.Chen K.Chen L.L.Chen P.Chen S.L.Chen S.M.Chen S.Chen S.P.Chen W.Chen X.Chen X.F.Chen X.R.Chen Y.Chen Y.Q.Chen H.Y.Cheng J.Cheng S.Cheng T.G.Cheng J.P.Dai L.Y.Dai X.C.Dai D.Dedovich A.Denig I.Denisenko J.M.Dias D.Z.Ding L.Y.Dong W.H.Dong V.Druzhinin D.S.Du Y.J.Du Z.G.Du L.M.Duan D.Epifanov Y.L.Fan S.S.Fang Z.J.Fang G.Fedotovich C.Q.Feng X.Feng Y.T.Feng J.L.Fu J.Gao Y.N.Gao P.S.Ge C.Q.Geng L.S.Geng A.Gilman L.Gong T.Gong B.Gou W.Gradl J.L.Gu A.Guevara L.C.Gui A.Q.Guo F.K.Guo J.C.Guo J.Guo Y.P.Guo Z.H.Guo A.Guskov K.L.Han L.Han M.Han X.Q.Hao J.B.He S.Q.He X.G.He Y.L.He Z.B.He Z.X.Heng B.L.Hou T.J.Hou Y.R.Hou C.Y.Hu H.M.Hu K.Hu R.J.Hu W.H.Hu X.H.Hu Y.C.Hu J.Hua G.S.Huang J.S.Huang M.Huang Q.Y.Huang W.Q.Huang X.T.Huang X.J.Huang Y.B.Huang Y.S.Huang N.Hüsken V.Ivanov Q.P.Ji J.J.Jia S.Jia Z.K.Jia H.B.Jiang J.Jiang S.Z.Jiang J.B.Jiao Z.Jiao H.J.Jing X.L.Kang X.S.Kang B.C.Ke M.Kenzie A.Khoukaz I.Koop E.Kravchenko A.Kuzmin Y.Lei E.Levichev C.H.Li C.Li D.Y.Li F.Li G.Li G.Li H.B.Li H.Li H.N.Li H.J.Li H.L.Li J.M.Li J.Li L.Li L.Li L.Y.Li N.Li P.R.Li R.H.Li S.Li T.Li W.J.Li X.Li X.H.Li X.Q.Li X.H.Li Y.Li Y.Y.Li Z.J.Li H.Liang J.H.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.Liao C.X.Lin D.X.Lin X.S.Lin B.J.Liu C.W.Liu D.Liu F.Liu G.M.Liu H.B.Liu J.Liu J.J.Liu J.B.Liu K.Liu K.Y.Liu K.Liu L.Liu Q.Liu S.B.Liu T.Liu X.Liu Y.W.Liu Y.Liu Y.L.Liu Z.Q.Liu Z.Y.Liu Z.W.Liu I.Logashenko Y.Long C.G.Lu J.X.Lu N.Lu Q.F.Lü Y.Lu Y.Lu Z.Lu P.Lukin F.J.Luo T.Luo X.F.Luo Y.H.Luo H.J.Lyu X.R.Lyu J.P.Ma P.Ma Y.Ma Y.M.Ma F.Maas S.Malde D.Matvienko Z.X.Meng R.Mitchell A.Nefediev Y.Nefedov S.L.Olsen Q.Ouyang P.Pakhlov G.Pakhlova X.Pan Y.Pan E.Passemar Y.P.Pei H.P.Peng L.Peng X.Y.Peng X.J.Peng K.Peters S.Pivovarov E.Pyata B.B.Qi Y.Q.Qi W.B.Qian Y.Qian C.F.Qiao J.J.Qin J.J.Qin L.Q.Qin X.S.Qin T.L.Qiu J.Rademacker C.F.Redmer H.Y.Sang M.Saur W.Shan X.Y.Shan L.L.Shang M.Shao L.Shekhtman C.P.Shen J.M.Shen Z.T.Shen H.C.Shi X.D.Shi B.Shwartz A.Sokolov J.J.Song W.M.Song Y.Song Y.X.Song A.Sukharev J.F.Sun L.Sun X.M.Sun Y.J.Sun Z.P.Sun J.Tang S.S.Tang Z.B.Tang C.H.Tian J.S.Tian Y.Tian Y.Tikhonov K.Todyshev T.Uglov V.Vorobyev B.D.Wan B.L.Wang B.Wang D.Y.Wang G.Y.Wang G.L.Wang H.L.Wang J.Wang J.H.Wang J.C.Wang M.L.Wang R.Wang R.Wang S.B.Wang W.Wang W.P.Wang X.C.Wang X.D.Wang X.L.Wang X.L.Wang X.P.Wang X.F.Wang Y.D.Wang Y.P.Wang Y.Q.Wang Y.L.Wang Y.G.Wang Z.Y.Wang Z.Y.Wang Z.L.Wang Z.G.Wang D.H.Wei X.L.Wei X.M.Wei Q.G.Wen X.J.Wen G.Wilkinson B.Wu J.J.Wu l.wu P.Wu T.W.Wu Y.S.Wu L.Xia T.Xiang C.W.Xiao D.Xiao M.Xiao K.P.Xie Y.H.Xie Y.Xing Z.Z.Xing X.N.Xiong F.R.Xu J.Xu L.L.Xu Q.N.Xu X.C.Xu X.P.Xu Y.C.Xu Y.P.Xu Y.Xu Z.Z.Xu D.W.Xuan F.F.Xue L.Yan M.J.Yan W.B.Yan W.C.Yan X.S.Yan B.F.Yang C.Yang H.J.Yang H.R.Yang H.T.Yang J.F.Yang S.L.Yang Y.D.Yang Y.H.Yang Y.S.Yang Y.L.Yang Z.W.Yang Z.Y.Yang D.L.Yao H.Yin X.H.Yin N.Yokozaki S.Y.You Z.Y.You C.X.Yu F.S.Yu G.L.Yu H.L.Yu J.S.Yu J.Q.Yu L.Yuan X.B.Yuan Z.Y.Yuan Y.F.Yue M.Zeng S.Zeng A.L.Zhang B.W.Zhang G.Y.Zhang G.Q.Zhang H.J.Zhang H.B.Zhang J.Y.Zhang J.L.Zhang J.Zhang L.Zhang L.M.Zhang Q.A.Zhang R.Zhang S.L.Zhang T.Zhang X.Zhang Y.Zhang Y.J.Zhang Y.X.Zhang Y.T.Zhang Y.F.Zhang Y.C.Zhang Y.Zhang Y.Zhang Y.M.Zhang Y.L.Zhang Z.H.Zhang Z.Y.Zhang Z.Y.Zhang H.Y.Zhao J.Zhao L.Zhao M.G.Zhao Q.Zhao R.G.Zhao R.P.Zhao Y.X.Zhao Z.G.Zhao Z.X.Zhao A.Zhemchugov B.Zheng L.Zheng Q.B.Zheng R.Zheng Y.H.Zheng X.H.Zhong H.J.Zhou H.Q.Zhou H.Zhou S.H.Zhou X.Zhou X.K.Zhou X.P.Zhou X.R.Zhou Y.L.Zhou Y.Zhou Y.X.Zhou Z.Y.Zhou J.Y.Zhu K.Zhu R.D.Zhu R.L.Zhu S.H.Zhu Y.C.Zhu Z.A.Zhu V.Zhukova V.Zhulanov B.S.Zou Y.B.Zuo 《Frontiers of physics》 SCIE CSCD 2024年第1期1-154,共154页
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of... The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies. 展开更多
关键词 electron–positron collider tau-charm region high luminosity STCF detector conceptual design
原文传递
Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion 被引量:11
5
作者 l.wu ZDong +3 位作者 H.Du CLi N.X.Fang Y.Song 《Research》 EI CAS 2018年第1期194-200,共7页
Additive manufacturing based on liquid resin curing is one of the most promising methods to construct delicate structures.However,precision and speed are limited by the vertical adhesion of in situ cured resin at the ... Additive manufacturing based on liquid resin curing is one of the most promising methods to construct delicate structures.However,precision and speed are limited by the vertical adhesion of in situ cured resin at the curing interface.To overcome the unavoidable adhesion and to develop a general curing interface,we propose a slippery surface taking inspiration of the peristome surface of the pitcher plant.Such surface shows ultra-low adhesive energy at the curing interface due to the inhibition of the direct contact between the cured resin and the solid surface,which also increases the reflling speed of liquid resin.Tis ultra-low adhesive energy interface is efective for continuous 3D printing and provides insights into the physical mechanisms in reducing vertical solid-solid interfacial adhesion. 展开更多
关键词 CURING RESIN INTERFACE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部