In this note,we mainly make use of a method devised by Shaw[15]for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type Ω=Ω\∪_(j=1^(m))Ω_(j),where Ω and {Ω_(j)}_(j=1^(m)■Ω are bounded ...In this note,we mainly make use of a method devised by Shaw[15]for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type Ω=Ω\∪_(j=1^(m))Ω_(j),where Ω and {Ω_(j)}_(j=1^(m)■Ω are bounded pseudoconvex domains in ℂ^(n) with smooth boundaries,and Ω_(1),…,Ω_(m) are mutually disjoint.The main results can also be quickly obtained by virtue of[5].展开更多
设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T...设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T-模M_(1)/M_(2)φ^(M)是F-Gorenstein平坦模当且仅当M_(1)是F-Gorenstein平坦左A-模,Cokerφ^(M)是F-Gorenstein平坦左B-模,且φ^(M):U■AM 1→M_(2)是单射.展开更多
文摘In this note,we mainly make use of a method devised by Shaw[15]for studying Sobolev Dolbeault cohomologies of a pseudoconcave domain of the type Ω=Ω\∪_(j=1^(m))Ω_(j),where Ω and {Ω_(j)}_(j=1^(m)■Ω are bounded pseudoconvex domains in ℂ^(n) with smooth boundaries,and Ω_(1),…,Ω_(m) are mutually disjoint.The main results can also be quickly obtained by virtue of[5].