首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Ad...首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).展开更多
文摘首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).
基金Supported by the National Natural Science Foundation of China ( No .10501045) ,the Fund of the personnel Division of Nankai University , the Youth Project ofTianyuan Foundation of China( No .10426028) and the China Postdoctoral ScienceFoundation
基金This work is supported by the NSFC(No. 10171049)the Youth Project of Tianyuan Foundation of China(No.10426028)+1 种基金the China Postdoctoral Science Foundation(No. 2004036301)the Fund of the Personnel Division of Nankai University(No. J02017)