期刊文献+
共找到872篇文章
< 1 2 44 >
每页显示 20 50 100
利用单边核磁共振研究樟子松木材干燥水分迁移规律
1
作者 朱晓风 赵芝弘 +5 位作者 谭蕊 周龙 王一川 刘文静 张明辉 刘化冰 《波谱学杂志》 CAS 2024年第2期173-183,共11页
研究木材干燥过程中水分迁移可以更高效的利用木材.利用单边核磁共振技术(single-sided NMR)可沿木材不同方向进行一维测量的优势来探究木材在干燥过程中水分沿着轴向和弦向传递过程中不同测量深度的变化规律.本文以樟子松木材为研究对... 研究木材干燥过程中水分迁移可以更高效的利用木材.利用单边核磁共振技术(single-sided NMR)可沿木材不同方向进行一维测量的优势来探究木材在干燥过程中水分沿着轴向和弦向传递过程中不同测量深度的变化规律.本文以樟子松木材为研究对象,对其进行封胶处理使水分只沿着轴向或弦向传递,利用表观横向弛豫时间(T2app)来探究其在干燥过程中不同测量深度位置处的含水率变化.结果表明:樟子松木材在干燥过程的前2 h其接近蒸发面处存在少部分自由水,之后在干燥过程中基本上不存在自由水,且靠近蒸发面存在明显的含水率梯度;水分沿轴向传递时越远离蒸发面,水分分布相对均匀,弦向传递时越远离蒸发面,每层水分差异越明显.单边核磁共振技术可以检测木材不同测量深度位置的含水率,可为研究水分在木材中的迁移机理提供理论依据. 展开更多
关键词 单边核磁共振 木材干燥 水分迁移 表观横向弛豫时间(T2app) 迁移机理
下载PDF
Gradient coil design with enhanced shielding constraint for a cryogen-free superconducting MRI system 被引量:1
2
作者 Yaohui Wang Weimin Wang +3 位作者 Hui Liu Shunzhong Chen Feng Liu Qiuliang Wang 《Magnetic Resonance Letters》 2024年第1期1-9,共9页
The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic f... The relatively fragile low-temperature stability of cryogen-free superconducting magnetic resonance imaging(MRI)magnets requires the careful management of exogenous heat sources.A strongly shielded gradient magnetic field is important for the optimal operation of cryogen-free MRI systems.In this study,we present an enhanced shielding method incorporating a regionalized stray field constraining strategy.By optimizing the constraint parameters,we could develop engineering-feasible gradient coil schemes without increasing system complexity but with the stray field intensity reduced by half.In real measurement in an integrated MRI system,the developed gradient assembly demonstrated good performance and supported to output images of excellent quality.Our findings suggested that the proposed method could potentially form a useful design paradigm for cryogen-free MRI magnets. 展开更多
关键词 MRI Gradient coil Superconducting magnet Cryogen-free Magnetic shielding
下载PDF
Analysis of the electron transfer pathway in small laccase by EPR and UV-vis spectroscopy coupled with redox titration
3
作者 Lu Yu Aokun Liu +3 位作者 Jian Kuang Ruotong Wei Zhiwen Wang Changlin Tian 《Magnetic Resonance Letters》 2024年第3期52-59,共8页
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe... Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications. 展开更多
关键词 Electron paramagnetic resonance Redox titration Electron transfer Reduction Potential Small laccase
下载PDF
Structure and ion transport properties of organic ionic compounds revealed by NMR
4
作者 Haijin Zhu 《Magnetic Resonance Letters》 2024年第2期2-12,共11页
Organic ionic plastic crystals(OIPCs)are emerging as an important material family for solid-state electrolytes and many other applications.They have significant advantages over conventional electrolyte materials,such ... Organic ionic plastic crystals(OIPCs)are emerging as an important material family for solid-state electrolytes and many other applications.They have significant advantages over conventional electrolyte materials,such as high ionic conductivity,non-flammability,and plasticity.Various nuclear magnetic resonance(NMR)spectroscopy techniques including solid-state NMR,pulsed-field gradient(PFG)NMR,and magnetic resonance imaging(MRI)etc.,provide us a versatile toolkit to understand the fundamental level structures,molecular dynamics,and ionic interactions in these materials.This article reviews the commonly used NMR methods including solid-and solution-state NMR,PFG-NMR,dynamic nuclear polarization(DNP)and the application of these methods in revealing the microscopic level structures and ion-transport mechanisms in OIPC materials. 展开更多
关键词 NMR ELECTROLYTE Organic ionic plastic crystals DEFECTS Diffusion Microstructure
下载PDF
Experimental aspects of ^(14)N overtone RESPDOR solid-state NMR spectroscopy under MAS beyond 60 kHz
5
作者 Yutaro Ogaeri Yusuke Nishiyama 《Magnetic Resonance Letters》 2024年第1期40-49,共10页
Nitrogen-14(^(14)N)overtone(OT)spectroscopy under fast magic angle spinning(MAS)conditions(>60 kHz)has emerged as a powerful technique for observing correlations and distances between ^(14)N and ^(1)H,owing to the ... Nitrogen-14(^(14)N)overtone(OT)spectroscopy under fast magic angle spinning(MAS)conditions(>60 kHz)has emerged as a powerful technique for observing correlations and distances between ^(14)N and ^(1)H,owing to the absence of the first-order quadrupolar broadenings.In addition,^(14)N^(OT) allows selective manipulation of ^(14)N nuclei for each site.Despite extensive theoretical and experimental studies,the spin dynamics of ^(14)N^(OT) remains under debate.In this study,we conducted experimental investigations to assess the spin dynamics of ^(14)N^(OT) using the rotational-echo saturation-pulse double-resonance(RESPDOR)sequence,which monitors population transfer induced by a^(14)N^(OT) pulse.The ^(14)N^(OT) spin dynamics is well represented by a model of a two-energy-level system.Unlike spin-1/2,the maximum excitation efficiency of ^(14)N^(OT) coherences of powdered solids,denoted by p,depends on the radiofrequency field(rf-field)strength due to orientation dependence of effective nutation fields even when pulse lengths are optimized.It is also found that the p factor,contributing to the ^(14)N^(OT) spin dynamics,is nearly independent of the B0 field.Consequently,the filtering efficiency of RESPDOR experiments exhibits negligible dependence on B0 when the ^(14)N^(OT) pulse length is optimized.The study also identifies the optimal experimental conditions for ^(14)N^(OT)/^(1)H RESPDOR correlation experiments. 展开更多
关键词 ^(14)N OVERTONE RESPDOR ^(14)N/^(1)H correlation Solid-state NMR Fast MAS
下载PDF
Response analysis of NMRG system considering Rb-Xe coupling
6
作者 Yi Zhang Qiyuan Jiang +6 位作者 Bingfeng Sun Jiahu Wei Lin Yang Yongyuan Li Zhiguo Wang Kaiyong Yang Hui Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期390-402,共13页
The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analy... The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope. 展开更多
关键词 nuclear magnetic resonance gyroscope transfer characteristics Rb-Xe coupling
下载PDF
Structural analysis of silk using solid-state NMR
7
作者 Tetsuo Asakura 《Magnetic Resonance Letters》 2024年第3期19-34,共16页
Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric press... Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR. 展开更多
关键词 SILK Bombyx mori SPIDER Solid-state NMR STRUCTURE
下载PDF
Solid-state NMR study on sodium intercalation at low voltage window for Na_(3)V_(2)(PO_(4))_(3) as an anode
8
作者 Yuxin Liao Fushan Geng +1 位作者 Ming Shen Bingwen Hu 《Magnetic Resonance Letters》 2024年第2期40-45,共6页
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_... In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) ANODE Low voltage NMR Sodium ion battery
下载PDF
Operando NMR methods for studying electrocatalysis
9
作者 Zhiyu Zhu Ruipeng Luo Evan Wenbo Zhao 《Magnetic Resonance Letters》 2024年第2期54-64,共11页
The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its a... The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its atomic specificity and versatility in studying gas,liquid,and solid,allows the study of electrolyte solution,catalyst and catalyst-adsorbate interfaces.When applied in operando,NMR can offer molecular-level insights into various electrochemical processes.Operando NMR has been applied extensively in battery research,but relatively underexplored for electrocatalysis in the past two decades.In this mini review,we first introduce the operando electrochemical NMR setups,categorized by different probe designs.Then we review the applications of operando NMR for monitoring the electrolyte solution and the catalyst-adsorbate interface.Considering the high environmental impact of electrochemical conversion of CO_(2)into value-added products,we zoom in to the use of operando NMR in studying electrochemical CO_(2)reduction.Finally,we provide our perspective on further developing and applying operando NMR methods for understanding the complex reaction network of Cu-catalyzed electrochemical CO_(2)reduction. 展开更多
关键词 Operando NMR In situ NMR EC-NMR ELECTROCATALYSIS Electrochemical CO_(2)reduction
下载PDF
Solid-state NMR studies of proteins in condensed phases
10
作者 Jiani Xiang Xialian Wu +1 位作者 Angelo L.Chu Junxia Lu 《Magnetic Resonance Letters》 2024年第3期1-10,共10页
Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into... Some proteins perform their biological functions by changing their material states through liquid-liquid phase separation.Upon phase separation,the protein condenses into a concentrated liquid phase and sometimes into a gel phase,changing its dynamic properties and intermolecular interactions,thereby regulating cellular functions.Although the biological significance of this phenomenon has been widely recognized by researchers,there is still a lack of a comprehensive understanding of the structural and dynamic properties of the protein in the condensed phase.In this phase,molecules usually contain domains with varied dynamic properties and undergo intermediate exchanges.Magic angle spinning(MAS)solid-state NMR(SSNMR)experiments are very powerful in studying rigid protein polymers such as amyloid.The incorporation of solution-like experiments into SSNMR and the development of J-coupling based MAS SSNMR techniques extend its ability to study partially mobile segments of proteins in a condensed liquid or gel phase which are not visible by solution NMR or dipolar-coupling based SSNMR.Therefore,it has been applied in studying protein condensation and has provided very important information that is hard to obtain by other techniques. 展开更多
关键词 Magic angle spinning(MAS)solid-state NMR(SSNMR) Protein condenses J-coupling based MAS SSNMR Liquid-liquid phase separation
下载PDF
Magnetic resonance imaging techniques for lithium-ion batteries:Principles and applications
11
作者 Hongxin Lin Yanting Jin +4 位作者 Mingming Tao Yingao Zhou Peizhao Shan Danhui Zhao Yong Yang 《Magnetic Resonance Letters》 2024年第2期22-39,共18页
Operando monitoring of internal and local electrochemical processes within lithium-ion batteries(LIBs)is crucial,necessitating a range of non-invasive,real-time imaging characterization techniques including nuclear ma... Operando monitoring of internal and local electrochemical processes within lithium-ion batteries(LIBs)is crucial,necessitating a range of non-invasive,real-time imaging characterization techniques including nuclear magnetic resonance(NMR)techniques.This review provides a comprehensive overview of the recent applications and advancements of non-invasive magnetic resonance imaging(MRI)techniques in LIBs.It initially introduces the principles and hardware of MRI,followed by a detailed summary and comparison of MRI techniques used for characterizing liquid/solid electrolytes,electrodes and commercial batteries.This encompasses the determination of electrolytes'transport properties,acquisition of ion distribution profile,and diagnosis of battery defects.By focusing on experimental parameters and optimization strategies,our goal is to explore MRI methods suitable to a variety of research subjects,aiming to enhance imaging quality across diverse scenarios and offer critical physical/chemical insights into the ongoing operation processes of LIBs. 展开更多
关键词 Lithium-ion batteries Magnetic resonance imaging(MRI) Electrolytes ELECTRODES Commercial batteries
下载PDF
Revealing structure correlation between ionic liquid and metal-organic framework matrix
12
作者 Ligang Xu Wenda Zhang +8 位作者 Chenjie Lou Chenxu Geng Yuxiu Sun Jie Liu Yongchao Shi Huajie Luo Jipeng Fu Haiyan Zheng Mingxue Tang 《Magnetic Resonance Letters》 2024年第2期65-72,共8页
Solid-state batteries are rising rapidly in response to the fast-increasing energy demand.Metal-organic framework(MOF) loaded with ionic liquids has brought new opportunities for solid-state batteries owing to its goo... Solid-state batteries are rising rapidly in response to the fast-increasing energy demand.Metal-organic framework(MOF) loaded with ionic liquids has brought new opportunities for solid-state batteries owing to its good interfacial compatibility and high ionic conductivity. MOF-808 is selected to be filled with Li-contained ionic liquid for structure and ion dynamics investigation using nuclear magnetic resonance(NMR) and X-ray diffraction.This study finds that the introduced ionic liquid would partially soften the matrix of MOF-808 and thus yield amorphous phase. By selective isotope replacement under cycling symmetric ^(6)Li metal cell, Li^(+)ion is observed to mainly go cross ionic liquid in the open channel of matrix under potential polarization. 展开更多
关键词 Nuclear magnetic resonance Solid-state batteries MOF-808 Ionic liquid Local structure
下载PDF
Progress in in-situ electrochemical nuclear magnetic resonance for battery research
13
作者 Yong Jiang Mengmeng Zhao +1 位作者 Zhangquan Peng Guiming Zhong 《Magnetic Resonance Letters》 2024年第2期13-21,共9页
A thorough understanding of the fundamental electrochemical and chemical processes in batteries is crucial to advancing energy density and power density.However,the characterizations of such processes are complex.In-s... A thorough understanding of the fundamental electrochemical and chemical processes in batteries is crucial to advancing energy density and power density.However,the characterizations of such processes are complex.In-situ electrochemical nuclear magnetic resonance(EC-NMR)offers the capability to collect real-time data during battery operation,furnishing insights into the local structures and ionic dynamics of materials by monitoring changes in the chemical environment around the nuclei.EC-NMR also has the advantages of being both quantitative and non-destructive.This paper systematically reviews the design of EC-NMR approach,and delves into the applications and progress of EC-NMR concerning battery reaction mechanisms,failure mechanisms,and overall battery systems.The review culminates in a comprehensive summary of the perspective and challenges associated with EC-NMR. 展开更多
关键词 In-situ NMR Reaction mechanism Failure mechanism Battery systems Ionic dynamics
下载PDF
Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins
14
作者 Sari Kumagai Izuru Kawamura 《Magnetic Resonance Letters》 2024年第3期11-18,共8页
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro... Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy. 展开更多
关键词 Membrane proteins Microbial rhodopsin RETINAL Solid-state NMR Protonated Schiff base
下载PDF
Rheo-NMR: A versatile hyphenated technique for capturing molecular dynamics and structure under flow
15
作者 Yuqi Xiong Zishuo Wu +2 位作者 Lei Wu Chengyan Li Wei Chen 《Magnetic Resonance Letters》 2024年第1期50-60,共11页
The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-fi... The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction. 展开更多
关键词 RHEO-NMR Polymer deformation mechanism Polymer rheology Viscoelastic property
下载PDF
A study on the temperature sensitivity of NMR porosity in porous media based on the intensity of magnetization Dedicated to the special issue “Magnetic Resonance in Porous Media”
16
作者 Lu Zhang Lizhi Xiao +4 位作者 Wensheng Wu Guangzhi Liao Yan Zhang Sihui Luo Xinglong Lei 《Magnetic Resonance Letters》 2024年第1期28-39,共12页
The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of th... The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed. 展开更多
关键词 NMR porosity Temperature Porous media Intensity of magnetization
下载PDF
Facile identification of fluorosurfactant category in aqueous film-forming foam concentrates via optimized^(19)F NMR
17
作者 Peiyao Chen Shuang Zhuang +5 位作者 Weiguang Chen Zhijian Chen Rongzhen Li Fangyu Chen Tingting Jiang Xiaobin Fu 《Magnetic Resonance Letters》 2024年第3期42-51,共10页
Aqueous film-forming foams(AFFFs)are the primary source of toxic perfluoroalkyl and polyfluoroalkyl substances(PFAS)in wastewater.Thus,it is urgent to develop a facile and fast method for identifying fluorosurfactants... Aqueous film-forming foams(AFFFs)are the primary source of toxic perfluoroalkyl and polyfluoroalkyl substances(PFAS)in wastewater.Thus,it is urgent to develop a facile and fast method for identifying fluorosurfactants in commercially available AFFFs.In this work,fluorine nuclear magnetic resonance(^(19)F NMR)spectroscopy was optimized to measure AFFFs directly with the extra addition of 5%D_(2)O as the locking reagent,and high-quality spectra could be acquired within 4 min(0.1%fluorosurfactant content).Recovery experiments demonstrated that the use of different AFFFs had no marked influence on the quantitative analysis of fluorosurfactants.Such method works with low-field NMR spectroscopy(1.4 T)as well.Two-dimensional(2D)^(19)F COSY NMR was used to make signal assignments for different fluorosurfactant derivatives.The optimized ^(19)F NMR could quantify the commercially available fluorosurfactants in different AFFFs,identify them being in either the perfluorooctane sulfonate(PFOS)or fluorotelomer sulfonic acid(FTS)categories,and distinguish the head-group of PFOS and FTS derivatives,which exhibits great potentials in the developments of relevant commercial detections. 展开更多
关键词 Aqueous film-forming foams FLUOROSURFACTANTS 19F NMR Perfluorooctane sulfonate
下载PDF
Transient NOE driven signal enhancement of INADEQUATE solid-state NMR spectroscopy for the structural analysis of rubbers
18
作者 Zhiwei Yan Yue-Qi Ye Rongchun Zhang 《Magnetic Resonance Letters》 2024年第3期35-41,共7页
INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its us... INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment. 展开更多
关键词 Transient NOE INADEQUATE Carbon skeleton RUBBERS
下载PDF
A review of ^(17)O isotopic labeling techniques for solid-state NMR structural studies of metal oxides in lithium-ion batteries
19
作者 Xiaoli Xia Lei Zhu +2 位作者 Weiping Tang Luming Peng Junchao Chen 《Magnetic Resonance Letters》 2024年第2期46-53,共8页
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur... Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed. 展开更多
关键词 ^(17)O solid-state NMR ^(17)O isotopic labeling methods Bulk and surfaces of metal oxides DFT calculation
下载PDF
Editorial
20
作者 Yong Yang Riqiang Fu Hua Huo 《Magnetic Resonance Letters》 2024年第2期1-1,共1页
In pursuit of higher energy density,lower cost,longer lifespan and safety,remarkable research efforts have been taken to innovate various types of energy storage materials/devices,especially metal-ion batteries such a... In pursuit of higher energy density,lower cost,longer lifespan and safety,remarkable research efforts have been taken to innovate various types of energy storage materials/devices,especially metal-ion batteries such as Li-ion batteries(LIBs).One of the major challenges is to elucidate the working mechanisms and/or the controlling factors of any new material in a full battery,which requires adequate characterization/diagnosis techniques.Among the numerous electrochemical ex-situ and insitu characterization techniques,magnetic resonance techniques,including nuclear magnetic resonance(NMR),magnetic resonance imaging(MRI)and electron paramagnetic resonance(EPR),are unique in terms of providing structural information at the atomic level and real-time phase and morphology evolution and characterizing ionic motion at various timescales.This special issue is dedicated to an editorial and a selection of papers on the theme of investigating energy storage materials/devices using magnetic resonance techniques.As the guest editors of this special issue,we are honored to introduce the following high-quality research articles and review articles. 展开更多
关键词 NMR PURSUIT characterizing
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部