塞曼效应是目前测量太阳磁场最主要的方法,但使用塞曼效应观测存在两个问题:测量到的矢量磁场中,垂直于视线方向的磁场(横场)方向存在180°不确定性;同时,横场的测量精度也要比沿视线方向的磁场(纵场)低一个量级.可以通过在不同的...塞曼效应是目前测量太阳磁场最主要的方法,但使用塞曼效应观测存在两个问题:测量到的矢量磁场中,垂直于视线方向的磁场(横场)方向存在180°不确定性;同时,横场的测量精度也要比沿视线方向的磁场(纵场)低一个量级.可以通过在不同的视线方向立体观测磁场去除180°不确定性并且提高太阳磁场横场的测量精度.重点讨论联合日地L5点和日地连线方向的观测提高横场测量精度的问题,同时通过模型建构与数据定量分析,得出横场误差的减小量.通过球面三角公式,求得地球和L5点磁场的坐标关系,由标准偏差传递公式得到修正后的地球处的测量误差;统计日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)观测到的太阳磁场误差的数据分布,模拟出两幅符合太阳磁场分布的数据,分别作为地球和L5点的误差图;结合地球和L5点数据,得出地球横场误差的修正数据并与原始横场数据进行对比,发现可以使地球处观测的黄道面上的横场误差降低为原来的17%左右.展开更多
The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approx...The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.展开更多
The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S ...The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S made from 2022 to 2024.In August 2022,ASO-S completed its Phase D study and was successfully launched on October 9,2022.The commissioning phase was carried out and concluded within the first nine months following the launch.The data and associated analysis software have been opened to the community and the research on the early ASO-S data has been well developed.We anticipate also the achievements in data research pertaining to ASO-S in the near future.展开更多
中国科学院云南天文台首次提出了太阳爆发过程及相应磁场结构抵近探测的科学项目,该项目将对太阳大气及发生在其中的剧烈活动进行前所未有的近距离测量。为项目研制的探测器近日区域运行时间将超过帕克太阳探测器(Parker Solar Probe,P...中国科学院云南天文台首次提出了太阳爆发过程及相应磁场结构抵近探测的科学项目,该项目将对太阳大气及发生在其中的剧烈活动进行前所未有的近距离测量。为项目研制的探测器近日区域运行时间将超过帕克太阳探测器(Parker Solar Probe,PSP)和太阳轨道探测器(Solar Orbiter),其热防护系统遇到的困难也远超后两者。首先分析了抵近探测器的轨道环境特点,提出了热防护的设计思路,然后给出了具体热防护系统设计、仿真和地面实验方案。初步研究显示,热防护系统的设计方案具有辐射散热好、耐高温、稳定可靠等优点。展开更多
文摘塞曼效应是目前测量太阳磁场最主要的方法,但使用塞曼效应观测存在两个问题:测量到的矢量磁场中,垂直于视线方向的磁场(横场)方向存在180°不确定性;同时,横场的测量精度也要比沿视线方向的磁场(纵场)低一个量级.可以通过在不同的视线方向立体观测磁场去除180°不确定性并且提高太阳磁场横场的测量精度.重点讨论联合日地L5点和日地连线方向的观测提高横场测量精度的问题,同时通过模型建构与数据定量分析,得出横场误差的减小量.通过球面三角公式,求得地球和L5点磁场的坐标关系,由标准偏差传递公式得到修正后的地球处的测量误差;统计日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)观测到的太阳磁场误差的数据分布,模拟出两幅符合太阳磁场分布的数据,分别作为地球和L5点的误差图;结合地球和L5点数据,得出地球横场误差的修正数据并与原始横场数据进行对比,发现可以使地球处观测的黄道面上的横场误差降低为原来的17%左右.
基金support from Grant PID2020-116075GB-C21funded by MCIN/AEI/10.13039/501100011033+1 种基金by“ERDF A way of making Europe”under Grant PID2020-116075GB-C21They also acknowledge financial support from the State Agency for Research of the Spanish Ministry of Science and Innovation through the“Unit of Excellence Maria de Maeztu 2020-2023”award to the Institute of Cosmos Sciences(CEX2019-000918-M)。
文摘The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0560000,XDA15320000)the National Key R&D Program of China(2022 YFF0503002)the National Natural Science Foundation of China(12233012,12333010,11921003)。
文摘The Advanced Space-based Solar Observatory(ASO-S)marked China's first comprehensive solar mission in space.Drawing upon the previous reports covering 2018-2020 and 2020-2022,we present here an update on the ASO-S made from 2022 to 2024.In August 2022,ASO-S completed its Phase D study and was successfully launched on October 9,2022.The commissioning phase was carried out and concluded within the first nine months following the launch.The data and associated analysis software have been opened to the community and the research on the early ASO-S data has been well developed.We anticipate also the achievements in data research pertaining to ASO-S in the near future.
文摘中国科学院云南天文台首次提出了太阳爆发过程及相应磁场结构抵近探测的科学项目,该项目将对太阳大气及发生在其中的剧烈活动进行前所未有的近距离测量。为项目研制的探测器近日区域运行时间将超过帕克太阳探测器(Parker Solar Probe,PSP)和太阳轨道探测器(Solar Orbiter),其热防护系统遇到的困难也远超后两者。首先分析了抵近探测器的轨道环境特点,提出了热防护的设计思路,然后给出了具体热防护系统设计、仿真和地面实验方案。初步研究显示,热防护系统的设计方案具有辐射散热好、耐高温、稳定可靠等优点。