期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
1
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft X-ray Imaging micropore optics large area CCD
下载PDF
Hybrid-Vlasov simulation of soft X-ray emissions at the Earth’s dayside magnetospheric boundaries 被引量:2
2
作者 M.Grandin H.K.Connor +5 位作者 S.Hoilijoki M.Battarbee Y.Pfau-Kempf U.Ganse K.Papadakis M.Palmroth 《Earth and Planetary Physics》 EI CSCD 2024年第1期70-88,共19页
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech... Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside. 展开更多
关键词 MAGNETOSPHERE MAGNETOSHEATH numerical simulation SMILE LEXI soft X-ray emissions hybrid-Vlasov model polar cusp flux transfer events mirror-mode waves
下载PDF
On the apparent line-of-sight alignment of the peak X-ray intensity of the magnetosheath and the tangent to the magnetopause,as viewed by SMILE-SXI 被引量:2
3
作者 Andrew Read 《Earth and Planetary Physics》 EI CSCD 2024年第1期155-172,共18页
The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible f... The Soft X-ray Imager(SXI)on board the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)spacecraft will be able to view the Earth’s magnetosheath in soft X-rays.Simulated images of the X-ray emission visible from the position of SMILE are created for a range of solar wind densities by using 3 years of the SMILE mission orbit,together with models of the expected X-ray emissivity from the Earth’s magnetosheath.Results from global magnetohydrodynamic simulations and a simple model for exospheric neutral densities are used to compare the locations of the lines of sight along which integrated soft X-ray intensities peak with the lines of sight lying tangent to surfaces(defined here to be the magnetopause)along which local soft X-ray intensities peak or exhibit their strongest gradients,or both,for strongly southward interplanetary magnetic field conditions when no depletion or low-latitude boundary layers are expected.Where,in the parameter space of the various times and seasons,orbital phases,solar wind conditions,and magnetopause models,the alignment of the X-ray emission peak with the magnetopause tangent is good,or is not,is presented.The main results are as follows.The spacecraft needs to be positioned well outside the magnetopause;low-altitude times near perigee are not good.In addition,there are seasonal aspects:dayside-apogee orbits are generally very good because the spacecraft travels out sunward at high altitude,but nightside-apogee orbits,behind the Earth,are bad because the spacecraft only rarely leaves the magnetopause.Dusk-apogee and dawnapogee orbits are intermediate.Dayside-apogee orbits worsen slightly over the first three mission years,whereas nightside-apogee orbits improve slightly.Additionally,many more times of good agreement with the peak-to-tangent hypothesis occur when the solar wind is in a high-density state,as opposed to a low-density state.In a high-density state,the magnetopause is compressed,and the spacecraft is more often a good distance outside the magnetopause. 展开更多
关键词 X-rays MAGNETOSPHERE MAGNETOSHEATH MAGNETOPAUSE Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Earth solar wind charge exchange
下载PDF
Two methods for separating the magnetospheric solar wind charge exchange soft X-ray emission from the diffuse X-ray background 被引量:2
4
作者 YingJie Zhang TianRan Sun +5 位作者 JenniferACarter WenHao Liu Steve Sembay ShuiNai Zhang Li Ji Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期119-132,共14页
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo... Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options. 展开更多
关键词 solar wind charge exchange(SWCX) ROSAT All-Sky Survey(RASS) soft X-ray X-ray imaging MAGNETOSPHERE
下载PDF
Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath 被引量:2
5
作者 Jin Guo TianRan Sun +6 位作者 San Lu QuanMing Lu Yu Lin XueYi Wang Chi Wang RongSheng Wang Kai Huang 《Earth and Planetary Physics》 EI CSCD 2024年第1期47-58,共12页
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ... Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered. 展开更多
关键词 MAGNETOPAUSE X-ray emissivity X-ray imaging SMILE global hybrid-PIC simulation
下载PDF
The CCD instrument background of the SMILE SXI 被引量:2
6
作者 M.W.J.Hubbard O.Hetherington +6 位作者 D.J.Hall T.W.Buggey S.Parsons T.Arnold A.Holland C.Pagani S.Sembay 《Earth and Planetary Physics》 EI CSCD 2024年第1期15-24,共10页
The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrou... The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes. 展开更多
关键词 instrument background X-ray astronomy space radiation
下载PDF
Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions:Global kinetic simulations and Soft X-ray Imaging 被引量:2
7
作者 ZhongWei Yang RiKu Jarvinen +7 位作者 XiaoCheng Guo TianRan Sun Dimitra Koutroumpa George K.Parks Can Huang BinBin Tang QuanMing Lu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期59-69,共11页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes. 展开更多
关键词 collisionless shock SMILE mission FORESHOCK
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
8
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Estimating the subsolar magnetopause position from soft X-ray images using a low-pass image filter 被引量:1
9
作者 Hyangpyo Kim Hyunju K.Connor +9 位作者 Jaewoong Jung Brian M.Walsh David Sibeck Kip D.Kuntz Frederick S.Porter Catriana K.Paw U Rousseau A.Nutter Ramiz Qudsi Rumi Nakamura Michael Collier 《Earth and Planetary Physics》 EI CSCD 2024年第1期173-183,共11页
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l... The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives. 展开更多
关键词 soft X-ray MAGNETOPAUSE RECONNECTION low-pass filter LEXI SMILE
下载PDF
Solar wind ion charge state distributions and compound cross sections for solar wind charge exchange X-ray emission 被引量:1
10
作者 Dimitra Koutroumpa 《Earth and Planetary Physics》 EI CSCD 2024年第1期105-118,共14页
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie... Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions. 展开更多
关键词 solar wind charge exchange X-rays MAGNETOSPHERE HELIOSPHERE
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
11
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft X-ray imager characterisation SMILE
下载PDF
Origins of perturbations in dayside equatorial ground magnetograms 被引量:1
12
作者 Syau-Yun W.Hsieh David G.Sibeck 《Earth and Planetary Physics》 EI CSCD 2024年第1期215-221,共7页
To determine the cause(s)of perturbations seen in dayside equatorial ground magnetograms,we conducted a systematic survey of simultaneous ground-based and geosynchronous satellite-based observations during the 90-day ... To determine the cause(s)of perturbations seen in dayside equatorial ground magnetograms,we conducted a systematic survey of simultaneous ground-based and geosynchronous satellite-based observations during the 90-day period from December 1,2020 to February 28,2021.We examined Huancayo ground magnetometer observations from 14:00:00 to 20:00:00 UT each day,during which Huancayo passed through local noon.From those data we chose perturbation events selected on the basis of large(>20 nT)event amplitude and classified the selected events as responding primarily to solar wind pressure,or to variations in the north/south component of the interplanetary magnetic field(IMF Bz),or perhaps in part to both.The results show that an equivalent number of events were identified for each model during this 90-day period.Variations in the lagged solar wind dynamic pressure routinely correspond to nearly simultaneous sudden impulses recorded at both geosynchronous orbit and on the ground.Variations in IMF Bz produce erosion signatures at geosynchronous orbit and can correspond to ground events if lag times for reconnection to enhance convection in the magnetosphere are taken into account. 展开更多
关键词 dayside magnetosphere dayside equatorial ionosphere geosynchronous magnetic field
下载PDF
X-Ray Source Classification Using Machine Learning:A Study with EP-WXT Pathfinder LEIA
13
作者 Xiaoxiong Zuo Yihan Tao +7 位作者 Yuan Liu Yunfei Xu Wenda Zhang Haiwu Pan Hui Sun Zhen Zhang Chenzhou Cui Weimin Yuan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第8期175-195,共21页
X-ray observations play a crucial role in time-domain astronomy.The Einstein Probe(EP),a recently launched X-ray astronomical satellite,emerges as a forefront player in the field of time-domain astronomy and high-ener... X-ray observations play a crucial role in time-domain astronomy.The Einstein Probe(EP),a recently launched X-ray astronomical satellite,emerges as a forefront player in the field of time-domain astronomy and high-energy astrophysics.With a focus on systematic surveys in the soft X-ray band,EP aims to discover high-energy transients and monitor variable sources in the universe.To achieve these objectives,a quick and reliable classification of observed sources is essential.In this study,we developed a machine learning classifier for autonomous source classification using data from the EP-WXT Pathfinder—Lobster Eye Imager for Astronomy(LEIA)and EP-WXT simulations.The proposed Random Forest classifier,built on selected features derived from light curves,energy spectra,and location information,achieves an accuracy of approximately 95%on EP simulation data and 98%on LEIA observational data.The classifier is integrated into the LEIA data processing pipeline,serving as a tool for manual validation and rapid classification during observations.This paper presents an efficient method for the classification of X-ray sources based on single observations,along with implications of most effective features for the task.This work facilitates rapid source classification for the EP mission and also provides valuable insights into feature selection and classification techniques for enhancing the efficiency and accuracy of X-ray source classification that can be adapted to other X-ray telescope data. 展开更多
关键词 methods data analysis-X-rays binaries-stars VARIABLES general-X-rays BURSTS
下载PDF
Rotating Massive Strangeon Stars and X-Ray Plateau of Short GRBs
14
作者 Xi-Yan Yang Xiao-Yu Lai +1 位作者 Wei-Wei Tan Ren-Xin Xu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期47-57,共11页
Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the rem... Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars. 展开更多
关键词 dense matter-(stars) PULSARS general-(stars) gamma-ray burst GENERAL
下载PDF
Study of Secondary Cosmic Rays and Astronomical X-Ray Sources using Small Stratospheric Balloons
15
作者 Rupnath Sikdar Sandip K.Chakrabarti Debashis Bhowmick 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第6期94-109,共16页
The X-ray sources of the universe are extraterrestrial in nature which emit X-ray photons.The closest strong X-ray source is the Sun,which is followed by various compact sources such as neutron stars,black holes,the C... The X-ray sources of the universe are extraterrestrial in nature which emit X-ray photons.The closest strong X-ray source is the Sun,which is followed by various compact sources such as neutron stars,black holes,the Crab pulsar,etc.In this paper,we analyze the data received from several low-cost lightweight meteorological balloon-borne missions launched by the Indian Centre for Space Physics.Our main interest is to study the variation of the vertical intensity of secondary cosmic rays,the detection of strong X-ray sources,and their spectra in the energy band of^(1)0–80 keV during the complete flights.Due to the lack of an onboard pointing system,low exposure time,achieving a maximum altitude of only~42 km,and freely rotating the payload about its axis,we modeled the background radiation flux for the X-ray detector using physical assumptions.We also present the source detection method,observation of the pulsation of the Crab(^(3)3 Hz),and spectra of some sources such as the quiet Sun and the Crab pulsar. 展开更多
关键词 X-rays:stars BALLOONS instrumentation:detectors
下载PDF
A Possible X-ray Quasi-periodic Oscillation in the Narrow-line Seyfert 1 Galaxy Mrk 142
16
作者 Xiao-Gu Zhong Jian-Cheng Wang +1 位作者 Yong-Yun Chen Xiao-Ling Yu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第6期191-200,共10页
A possible quasi-periodic oscillation(QPO) at frequency 7.045 × 10^(-5) Hz is found in the narrow-line Seyfert 1galaxy Mrk 142 in the data of XMM-Newton collected on 2020 April 11.We find that the QPO signal is s... A possible quasi-periodic oscillation(QPO) at frequency 7.045 × 10^(-5) Hz is found in the narrow-line Seyfert 1galaxy Mrk 142 in the data of XMM-Newton collected on 2020 April 11.We find that the QPO signal is statistically significantly larger than the 5σ level and highly coherent with quality factor Q > 5 at the 0.3–10 keV band by using the method of the Lomb–Scargle Periodogram,the Weighted Wavelet Z-transform and the REDFIT.We analyze the data in 0.3–0.6 keV,0.6–1 keV,1–3 keV and 3–10 keV energy bands,and find obvious QPO signals at 0.3–0.6 keV and 1–3 keV bands.We then analyze the time-average spectra and time variability at the QPO frequency of 7.045 × 10^(-5) Hz,and use a model to fit them.We find that the QPO signal mainly comes from the X-ray hot corona. 展开更多
关键词 X-rays:galaxies galaxies:Seyfert ACCRETION accretion disks radiation mechanisms:general
下载PDF
Study of Type-B QPOs Observed in Black Hole X-Ray Binary Swift J1728.9-3613
17
作者 Raj Kumar 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第3期1-9,共9页
We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it dis... We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it disappeared as flux increased,but again appeared at∼7.70 Hz when flux was dramatically decreased.The source was found in the soft intermediate state during these observations.We further studied the energy dependence of the QPO.We found that QPO was observed only for a higher energy range implying that the origin of QPO is possibly due to the corona emitting higher energy photons by the inverse Compton process.The variation of spectral parameters can be explained with the disk truncation model.The fractional rms was found to be monotonically increased with energy.The phase lag spectrum followed the“U-shaped”curve.The rms and phase lag spectrum are modeled and explained with the single-component Comptonization model vkompthdk. 展开更多
关键词 X-rays binaries-accretion-accretion disks-X-rays individual (Swift J1728.9-3613)
下载PDF
Timing and Spectral Analysis of the Black Hole X-Ray Binary MAXI J1803-298 with Insight-HXMT Data
18
作者 Ying-Chen Xu Jin-Lu Qu +6 位作者 MMéndez Rui-Can Ma Long Ji Liang Zhang Yue Huang Qing-Cui Bu Li-Ming Song 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第6期209-224,共16页
We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Wi... We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Within the Insight-HXMT data set,compared to the previous work,we identify a more prolonged presence of typeC quasi-periodic oscillations(QPOs)with centroid frequencies ranging from~0.16 to 6.3 Hz,which present correlations with the hardness ratio and the photon index of the Comptonized component.For QPO frequencies less than~2 Hz,the QPO phase lags are hard(photons of 10–19 keV arrive later than those of 1–4 keV),while at higher frequencies,the lags become soft at and above~4 Hz.Furthermore,the spectra in all Insight-HXMT observations consist of a multi-color blackbody component and a Comptonized component,as commonly observed in classical black hole X-ray binaries.We analyze state transitions and the evolution of accretion geometry in this work.The fitted inner disk radius increases abnormally during the low hard state,hypothesized to result from the corona condensing onto the inner disk.Additionally,two significant drops in flux are observed during the soft intermediate state,maybe implying changes in the corona/jet and the disk,respectively. 展开更多
关键词 X-rays:binaries ACCRETION accretion disks stars:black holes
下载PDF
Polarization Study of Swift J151857.0–572147 with IXPE Observation
19
作者 Yu-Shan Ling Fei Xie +1 位作者 Ming-Yu Ge Fabio La Monaca 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第9期60-65,共6页
We present an analysis of the Imaging X-ray Polarimetry Explorer observation from a newly discovered transient source:Swift J151857.0-572147.The obtained polarization degree(PD)and angle are 0.3%±0.3% and -24... We present an analysis of the Imaging X-ray Polarimetry Explorer observation from a newly discovered transient source:Swift J151857.0-572147.The obtained polarization degree(PD)and angle are 0.3%±0.3% and -24°±26°respectively in 2-8 keV within 68%confidence level errors,and polarization results are below MDP99in all energy bins,with the upper limit on PD of 0.8% in the 2-8 keV energy range.No quasi-periodic oscillations(QPOs)are detected in this observation.The polarization and QPO analyses support the hypothesis that the source was in the high soft state,and the results are consistent with predictions for a thin accretion disk model. 展开更多
关键词 stars:black holes POLARIZATION X-rays:bursts
下载PDF
ASO-S卫星HXI调制定标装置设计与验证 被引量:1
20
作者 陈灯意 张哲 +1 位作者 江贤恺 胡一鸣 《空间科学学报》 CAS CSCD 北大核心 2023年第4期747-757,共11页
先进天基太阳天文台卫星(ASO-S)是中国首颗综合性太阳观测任务,太阳硬X射线成像仪(HXI)是ASO-S卫星三大载荷之一,主要负责太阳耀斑观测。HXI采用阵列空间调制间接成像方法,包含91个子准直器单元。发射前,在地面对HXI进行调制参数定标非... 先进天基太阳天文台卫星(ASO-S)是中国首颗综合性太阳观测任务,太阳硬X射线成像仪(HXI)是ASO-S卫星三大载荷之一,主要负责太阳耀斑观测。HXI采用阵列空间调制间接成像方法,包含91个子准直器单元。发射前,在地面对HXI进行调制参数定标非常必要,但由于没有平行的X射线源而十分困难。本文根据HXI的基本原理与设计方案,提出了基于地面调制功能定标的设备与HXI调制定标的需求。根据所述需求,介绍了研制的X射线束流调制定标装置;利用该装置对HXI飞行件上所有子准直器完成地面调制功能定标。标定试验结果与预期相符,充分证明了准直器与X射线束流定标装置性能优良,该装置还可用于后续类似载荷的定标。 展开更多
关键词 HXI载荷 准直器 调制 束流定标 装置
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部