In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration...In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration of 24 yr from 1996 to 2019.During this,we observed a total of 15015 flares(8417 in SC-23 and 6598 in SC-24)emitted from a total of 33780 active regions(21746 in SC-23 and 12034 in SC-24)with sunspot only.We defined the flaring potential or flare-production potential as the ratio of the total number of flares produced from a particular type of SSG to the total number of the same-class SSGs observed on the solar surface.Here we studied yearly changes in the flaring potential of different McIntosh class groups of sunspots in different phases of SC-23 and 24.In addition,we investigated yearly variations in the potential of producing flares by different SSGs(A,B,C,D,E,F,and H)during different phases(ascending,maximum,descending,and minimum)of SC-23 and 24.These are our findings:(1)D,E,and F SSGs have the potential of producing flares≥8 times greater than A,B,C and H SSGs;(2)The larger and more complex D,E,and F SSGs produced nearly 80%of flares in SC-23 and 24;(3)The A,B,C and H SSGs,which are smaller and simpler,produced only 20%of flares in SC-23 and 24;(4)The biggest and most complex SSGs of F-class have flaring potential 1.996 and 3.443 per SSG in SC-23 and 24,respectively.(5)The potential for producing flares in each SSG is higher in SC-24 than in SC-23,although SC-24 is a weaker cycle than SC-23.(6)The alterations in the number of flares(C+M+X)show different time profiles than the alterations in sunspot numbers during SC-23 and 24,with several peaks.(7)The SSGs of C,D,E,and H-class have the highest flaring potential in the descending phase of both SC-23 and 24.(8)F-class SSGs have the highest flaring potential in the descending phase of SC-23 but also in the maximum phase of SC-24.展开更多
This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions ...This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.展开更多
We analyze electron acceleration by a large-scale electric field E in a collisional hydrogen plasma under the solar flare coronal conditions based on approaches proposed by Dreicer and Spitzer for the dynamic friction...We analyze electron acceleration by a large-scale electric field E in a collisional hydrogen plasma under the solar flare coronal conditions based on approaches proposed by Dreicer and Spitzer for the dynamic friction force of electrons.The Dreicer electric field EDr is determined as a critical electric field at which the entire electron population runs away.Two regimes of strong(E≲E_(Dr))and weak(E≪E_(Dr))electric field are discussed.It is shown that the commonly used formal definition of the Dreicer field leads to an overestimation of its value by about five times.The critical velocity at which the electrons of the"tail"of the Maxwell distribution become runaway under the action of the sub-Dreiser electric fields turns out to be underestimated by√3 times in some works because the Coulomb collisions between runaway and thermal electrons are not taken into account.The electron acceleration by sub-Dreicer electric fields generated in the solar corona faces difficulties.展开更多
基金partially supported by the Institute of Eminence(Io E)Program(Scheme No:6031)of BHU,Varanasi。
文摘In this present study,we have analyzed different types of X-ray solar flares(C,M,and X classes)coming out from different classes of sunspot groups(SSGs).The data which we have taken under this study cover the duration of 24 yr from 1996 to 2019.During this,we observed a total of 15015 flares(8417 in SC-23 and 6598 in SC-24)emitted from a total of 33780 active regions(21746 in SC-23 and 12034 in SC-24)with sunspot only.We defined the flaring potential or flare-production potential as the ratio of the total number of flares produced from a particular type of SSG to the total number of the same-class SSGs observed on the solar surface.Here we studied yearly changes in the flaring potential of different McIntosh class groups of sunspots in different phases of SC-23 and 24.In addition,we investigated yearly variations in the potential of producing flares by different SSGs(A,B,C,D,E,F,and H)during different phases(ascending,maximum,descending,and minimum)of SC-23 and 24.These are our findings:(1)D,E,and F SSGs have the potential of producing flares≥8 times greater than A,B,C and H SSGs;(2)The larger and more complex D,E,and F SSGs produced nearly 80%of flares in SC-23 and 24;(3)The A,B,C and H SSGs,which are smaller and simpler,produced only 20%of flares in SC-23 and 24;(4)The biggest and most complex SSGs of F-class have flaring potential 1.996 and 3.443 per SSG in SC-23 and 24,respectively.(5)The potential for producing flares in each SSG is higher in SC-24 than in SC-23,although SC-24 is a weaker cycle than SC-23.(6)The alterations in the number of flares(C+M+X)show different time profiles than the alterations in sunspot numbers during SC-23 and 24,with several peaks.(7)The SSGs of C,D,E,and H-class have the highest flaring potential in the descending phase of both SC-23 and 24.(8)F-class SSGs have the highest flaring potential in the descending phase of SC-23 but also in the maximum phase of SC-24.
基金supported by the Natural Natural Science Foundation of China(NSFC,grant No.12303062)Sichuan Science and Technology Program(2023NSFSC1351)+1 种基金Joint Funds of the National Natural Science Foundation of China(NSFC,grant No.U1931116)the Project Supported by the Specialized Research Fund for State Key Laboratories。
文摘This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.
基金supported by the Russian Foundation for Basic Research and the Czech Science Foundation(project No.20-52-26006,Tsap Yu.T.)the Russian Science Foundation(project No.22-12-00308,Stepanov A.V.and Tsap Yu.T.)。
文摘We analyze electron acceleration by a large-scale electric field E in a collisional hydrogen plasma under the solar flare coronal conditions based on approaches proposed by Dreicer and Spitzer for the dynamic friction force of electrons.The Dreicer electric field EDr is determined as a critical electric field at which the entire electron population runs away.Two regimes of strong(E≲E_(Dr))and weak(E≪E_(Dr))electric field are discussed.It is shown that the commonly used formal definition of the Dreicer field leads to an overestimation of its value by about five times.The critical velocity at which the electrons of the"tail"of the Maxwell distribution become runaway under the action of the sub-Dreiser electric fields turns out to be underestimated by√3 times in some works because the Coulomb collisions between runaway and thermal electrons are not taken into account.The electron acceleration by sub-Dreicer electric fields generated in the solar corona faces difficulties.