Coronal magnetic fields evolve quasi-statically over long timescales and dynamically over short timescales.As of now there exist no regular measurements of coronal magnetic fields,and therefore generating the coronal ...Coronal magnetic fields evolve quasi-statically over long timescales and dynamically over short timescales.As of now there exist no regular measurements of coronal magnetic fields,and therefore generating the coronal magnetic field evolution using observations of the magnetic field at the photosphere is a fundamental requirement to understanding the origin of transient phenomena from solar active regions(ARs).Using the magneto-friction(MF)approach,we aim to simulate the coronal field evolution in the solar AR 11429.The MF method is implemented in the open source PENCIL CODE along with a driver module to drive the initial field with different boundary conditions prescribed from observed vector magnetic fields at the photosphere.In order to work with vector potential and the observations,we prescribe three types of bottom boundary drivers with varying free-magnetic energy.The MF simulation reproduces the magnetic structure,which better matches the sigmoidal morphology exhibited by Atmospheric Imaging Assembly(AIA)images at the pre-eruptive time.We found that the already sheared field further driven by the sheared magnetic field will maintain and further build the highly sheared coronal magnetic configuration,as seen in AR 11429.Data-driven MF simulation is a viable tool to generate the coronal magnetic field evolution,capturing the formation of the twisted flux rope and its eruption.展开更多
Remote-sensing measurements indicate that heavy ions in the corona undergo an anisotropic and mass-charge dependent energization.A popular explanation to this phenomenon is the damping of the Alfven/ion cyclotron wave...Remote-sensing measurements indicate that heavy ions in the corona undergo an anisotropic and mass-charge dependent energization.A popular explanation to this phenomenon is the damping of the Alfven/ion cyclotron waves.In this paper,we propose that the ion beam instability can be an important source of the Alfven/ion cyclotron waves,and we study the excitation of the ion beam instability in the corona at the heliocentric distance~3R_(⊙)and the corresponding energy transfer process therein ba sed on plasma kinetic theory.The results indicate that the existence of the motionless heavy ions inhibits the ion beam instability.However,the anisotropic beams of heavy ions promote the excitation of the ion beam instability.Besides,the existence ofαbeams can provide a second energy source for exciting beam instability.However,when both the proton beam and the a beam reach the instability excitation threshold,the proton beam driven instability excites preferentially.Moreover,the excitation threshold of the Alfven/ion cyclotron instability driven by ion beam is of the local Alfven speed or even less in the corona.展开更多
基金the support from DST through Startup Research Grantfunding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Project Uni SDyn,grant agreement No.818665)(JW)。
文摘Coronal magnetic fields evolve quasi-statically over long timescales and dynamically over short timescales.As of now there exist no regular measurements of coronal magnetic fields,and therefore generating the coronal magnetic field evolution using observations of the magnetic field at the photosphere is a fundamental requirement to understanding the origin of transient phenomena from solar active regions(ARs).Using the magneto-friction(MF)approach,we aim to simulate the coronal field evolution in the solar AR 11429.The MF method is implemented in the open source PENCIL CODE along with a driver module to drive the initial field with different boundary conditions prescribed from observed vector magnetic fields at the photosphere.In order to work with vector potential and the observations,we prescribe three types of bottom boundary drivers with varying free-magnetic energy.The MF simulation reproduces the magnetic structure,which better matches the sigmoidal morphology exhibited by Atmospheric Imaging Assembly(AIA)images at the pre-eruptive time.We found that the already sheared field further driven by the sheared magnetic field will maintain and further build the highly sheared coronal magnetic configuration,as seen in AR 11429.Data-driven MF simulation is a viable tool to generate the coronal magnetic field evolution,capturing the formation of the twisted flux rope and its eruption.
基金funded by the National Natural Science Foundation of China(NSFC)under No.12347166。
文摘Remote-sensing measurements indicate that heavy ions in the corona undergo an anisotropic and mass-charge dependent energization.A popular explanation to this phenomenon is the damping of the Alfven/ion cyclotron waves.In this paper,we propose that the ion beam instability can be an important source of the Alfven/ion cyclotron waves,and we study the excitation of the ion beam instability in the corona at the heliocentric distance~3R_(⊙)and the corresponding energy transfer process therein ba sed on plasma kinetic theory.The results indicate that the existence of the motionless heavy ions inhibits the ion beam instability.However,the anisotropic beams of heavy ions promote the excitation of the ion beam instability.Besides,the existence ofαbeams can provide a second energy source for exciting beam instability.However,when both the proton beam and the a beam reach the instability excitation threshold,the proton beam driven instability excites preferentially.Moreover,the excitation threshold of the Alfven/ion cyclotron instability driven by ion beam is of the local Alfven speed or even less in the corona.