Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses curr...Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses current scientific understanding of Jupiter’s interior by summarizing the history of past and current exploration and data analysis.We review recent space-based and ground-based observation methods and analyze their feasibility.To gain new insight into the internal structure of Jupiter,we propose to study Jupiter’s innards by planetary seismology.Ground-based observation,namely the Jupiter Seismologic Interferometer Polarization Imager(SIPI)in Lenghu,will be developed to obtain the Doppler velocity distribution on the surface of Jupiter and identify oscillation signals.Lenghu has observation conditions that are not only exceptional in China but even in the world,capable of providing novel insight into the interior of Jupiter.This will also be the first study in China of the interior of Jupiter using asteroseismology,which has significant implications for China’s plans to explore Jupiter via spacecraft-mounted instruments.展开更多
The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for...The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for this problem.The negative temperature gradient with respect to latitude may play an important role here.This temperature gradient is induced by solar radiation because of the small axial inclination of Jupiter.Our numerical simulations suggest that cyclones in the polar regions of Jupiter may be modulated or controlled by the radially directional Rayleigh–Taylor instability,driven by centrifugal force and the negative temperature gradient along the latitude.展开更多
基金the National Natural Science Foundation of China(42222408)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2021027)the Key Research Program of the Institute of Geology and Geophysics,CAS(Grant IGGCAS-201904).
文摘Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses current scientific understanding of Jupiter’s interior by summarizing the history of past and current exploration and data analysis.We review recent space-based and ground-based observation methods and analyze their feasibility.To gain new insight into the internal structure of Jupiter,we propose to study Jupiter’s innards by planetary seismology.Ground-based observation,namely the Jupiter Seismologic Interferometer Polarization Imager(SIPI)in Lenghu,will be developed to obtain the Doppler velocity distribution on the surface of Jupiter and identify oscillation signals.Lenghu has observation conditions that are not only exceptional in China but even in the world,capable of providing novel insight into the interior of Jupiter.This will also be the first study in China of the interior of Jupiter using asteroseismology,which has significant implications for China’s plans to explore Jupiter via spacecraft-mounted instruments.
基金supported by the National Nature Science Foundation of China(Grant No.NSFC41974204).
文摘The persistence and symmetry of cyclones around the poles of Jupiter are unknown.In the present investigation,inspired by cyclones at the South Pole of the Earth,we propose a mechanism that provides an explanation for this problem.The negative temperature gradient with respect to latitude may play an important role here.This temperature gradient is induced by solar radiation because of the small axial inclination of Jupiter.Our numerical simulations suggest that cyclones in the polar regions of Jupiter may be modulated or controlled by the radially directional Rayleigh–Taylor instability,driven by centrifugal force and the negative temperature gradient along the latitude.