The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian componen...The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculat...With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high.展开更多
Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic p...Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.展开更多
基金support from the National Natural Science Foundation of China(No.42274006,42192535,42242015).
文摘The deflection of the vertical(DOV)is the key information in the study of ocean gravity field.However,in most areas,the precision of the prime component of DoV is significantly lower than that of the meridian component.To obtain higher accuracy and resolution of ocean gravity information,researchers have proposed a novel altimeter called the wide-swath altimeter.This altimeter allows for the simultaneous acquisition of high-precision and high-resolution two-dimensional measurements of sea surface height(SSH).In this paper,the Surface Water and Ocean Topography(SWOT)mission with a wide-swath altimeter on board is selected for research.One cycle of swoT sea surface height data is simulated to inverse the DOV in the Arabian Sea(45°E—80°E,0°-30°N),and the inversion results are compared with those of conventional altimeter data.The results demonstrate that the difference between the meridian and prime components derived from the inversion of swoT wide-swath data is minimal,significantly outperforming the inversion results of conventional nadir altimeter data.The advantage of swoT wide-swath altimeter lies in its ability to use the multi-directional geoid slope at any sea surface measurement point to invert the components in the meridian and prime directions.To investigate the impact of this advantage on inversion precision,this paper employs a method to calculate the gradient of the geoid in multiple directions to invert DoV components.The improvement effect of calculating the gradient of the geoid in multiple directions on the precision of DoV component is analyzed.It is found that the accuracy of DoV inversion has significantly improved with the increase of geodetic gradient calculation direction.In addition,the effects of various errors and grid spacing in SwoT wide sea surface height data on the precision of Dov inversion are also analyzed.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金The National Natural Science Foundation of China under contract Nos 42274006,42174041,41774001the Research Fund of University of Science and Technology under contract No.2014TDJH101.
文摘With the improvements in the density and quality of satellite altimetry data,a high-precision and high-resolution mean sea surface model containing abundant information regarding a marine gravity field can be calculated from long-time series multi-satellite altimeter data.Therefore,in this study,a method was proposed for determining marine gravity anomalies from a mean sea surface model.Taking the Gulf of Mexico(15°–32°N,80°–100°W)as the study area and using a removal-recovery method,the residual gridded deflections of the vertical(DOVs)are calculated by combining the mean sea surface,mean dynamic topography,and XGM2019e_2159 geoid,and then using the inverse Vening-Meinesz method to determine the residual marine gravity anomalies from the residual gridded DOVs.Finally,residual gravity anomalies are added to the XGM2019e_2159 gravity anomalies to derive marine gravity anomaly models.In this study,the marine gravity anomalies were estimated with mean sea surface models CNES_CLS15MSS,DTU21MSS,and SDUST2020MSS and the mean dynamic topography models CNES_CLS18MDT and DTU22MDT.The accuracy of the marine gravity anomalies derived by the mean sea surface model was assessed based on ship-borne gravity data.The results show that the difference between the gravity anomalies derived by DTU21MSS and CNES_CLS18MDT and those of the ship-borne gravity data is optimal.With an increase in the distance from the coast,the difference between the gravity anomalies derived by mean sea surface models and ship-borne gravity data gradually decreases.The accuracy of the difference between the gravity anomalies derived by mean sea surface models and those from ship-borne gravity data are optimal at a depth of 3–4 km.The accuracy of the gravity anomalies derived by the mean sea surface model is high.
基金supported by the National Natural Science Foundation of China (Grant Nos.42192535,41931076,42274116,42174102)the Basic Frontier Science Research Program of Chinese Academy of Sciences (Grant No.ZDBS-LY-DQC028).
基金Open Fund of Hubei Luojia Laboratory(No.220100033)National Natural Science Foundation of China(Nos.42174108,42192535,42242015)。
文摘Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.