基于中国气象局大气探测试验基地地基遥感垂直廓线系统中云雷达与微波辐射计同址观测的优势,使用2021年8月—2022年7月毫米波云雷达、探空数据,分析云雷达反射率因子与相对湿度特征关系,提出联合云雷达的微波辐射计相对湿度分段校正方法...基于中国气象局大气探测试验基地地基遥感垂直廓线系统中云雷达与微波辐射计同址观测的优势,使用2021年8月—2022年7月毫米波云雷达、探空数据,分析云雷达反射率因子与相对湿度特征关系,提出联合云雷达的微波辐射计相对湿度分段校正方法,实现云区微波辐射计相对湿度实时校正,并利用2023年1—8月探空和2023年7—8月ERA5(ECMWF reanalysis version 5)逐小时再分析数据进行误差分析。结果表明:入云区的相对湿度与反射率因子间呈正相关关系,云区中段相对湿度近似饱和状态,出云区与入云区相对湿度随高度变化近似对称;层状云条件下校正后微波辐射计与探空和ERA5相对湿度的均方根误差比校正前分别减小7.99%和8.91%,偏差中位数绝对值分别减小12.62%和13.05%,且连续观测时次经校正后误差均减小,校正效果较好;对流云条件下校正效果也较好,但部分个例存在过度校正。因此,联合云雷达的相对湿度分段校正方法能够实现微波辐射计相对湿度廓线的连续实时校正,可提高有云条件下微波辐射计的观测质量。展开更多
基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云...基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。展开更多
文摘基于中国气象局大气探测试验基地地基遥感垂直廓线系统中云雷达与微波辐射计同址观测的优势,使用2021年8月—2022年7月毫米波云雷达、探空数据,分析云雷达反射率因子与相对湿度特征关系,提出联合云雷达的微波辐射计相对湿度分段校正方法,实现云区微波辐射计相对湿度实时校正,并利用2023年1—8月探空和2023年7—8月ERA5(ECMWF reanalysis version 5)逐小时再分析数据进行误差分析。结果表明:入云区的相对湿度与反射率因子间呈正相关关系,云区中段相对湿度近似饱和状态,出云区与入云区相对湿度随高度变化近似对称;层状云条件下校正后微波辐射计与探空和ERA5相对湿度的均方根误差比校正前分别减小7.99%和8.91%,偏差中位数绝对值分别减小12.62%和13.05%,且连续观测时次经校正后误差均减小,校正效果较好;对流云条件下校正效果也较好,但部分个例存在过度校正。因此,联合云雷达的相对湿度分段校正方法能够实现微波辐射计相对湿度廓线的连续实时校正,可提高有云条件下微波辐射计的观测质量。
文摘基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。