Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.展开更多
本文利用取自浙江椒江河口3个未扰动柱状沉积物样,进行了孔隙水化学测试、固相沉积物的活性分量与黄铁矿分量的分级提取和测试,结果表明:Hg主要以黄铁矿态形式存在于沉积物中。As在有机碳较高的河口区潮上带和沉积速率较慢的潮下带主要...本文利用取自浙江椒江河口3个未扰动柱状沉积物样,进行了孔隙水化学测试、固相沉积物的活性分量与黄铁矿分量的分级提取和测试,结果表明:Hg主要以黄铁矿态形式存在于沉积物中。As在有机碳较高的河口区潮上带和沉积速率较慢的潮下带主要以黄铁矿形态存在[DTMP(degree of trace metal pyritization,痕量元素黄铁矿矿化程度)>50%)],而在中潮带As的黄铁矿矿化程度略低(DTMP均值为40.99%),研究区DOP(Fe的黄铁矿矿化程度)值普遍较低(<35%),Mn-DTMP低于3.32%。从而揭示了浙江椒江河口沉积物在数厘米以下,毒性痕量元素Hg和As被高度黄铁矿矿化的规律性,并指出在遇有海事活动或风暴潮事件对海底沉积物进行扰动时,河口沉积物与充氧的海水反应,高度黄铁矿矿化的痕量元素会转变成活性态,从而导致近海生态系统的毒性事件。展开更多
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.
文摘本文利用取自浙江椒江河口3个未扰动柱状沉积物样,进行了孔隙水化学测试、固相沉积物的活性分量与黄铁矿分量的分级提取和测试,结果表明:Hg主要以黄铁矿态形式存在于沉积物中。As在有机碳较高的河口区潮上带和沉积速率较慢的潮下带主要以黄铁矿形态存在[DTMP(degree of trace metal pyritization,痕量元素黄铁矿矿化程度)>50%)],而在中潮带As的黄铁矿矿化程度略低(DTMP均值为40.99%),研究区DOP(Fe的黄铁矿矿化程度)值普遍较低(<35%),Mn-DTMP低于3.32%。从而揭示了浙江椒江河口沉积物在数厘米以下,毒性痕量元素Hg和As被高度黄铁矿矿化的规律性,并指出在遇有海事活动或风暴潮事件对海底沉积物进行扰动时,河口沉积物与充氧的海水反应,高度黄铁矿矿化的痕量元素会转变成活性态,从而导致近海生态系统的毒性事件。