岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5...岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。展开更多
In order to study fracture mechanism of rocks in different brittle mineral contents,this study pro-poses a method to identify the acoustic emission signal released by rock fracture under different brittle miner-al con...In order to study fracture mechanism of rocks in different brittle mineral contents,this study pro-poses a method to identify the acoustic emission signal released by rock fracture under different brittle miner-al content(BMC),and then determine the content of brittle matter in rock.To understand related interference such as the noises in the acoustic emission signals released by the rock mass rupture,a 1DCNN-BLSTM network model with SE module is constructed in this study.The signal data is processed through the 1DCNN and BLSTM networks to fully extract the time-series correlation features of the signals,the non-correlated features of the local space and the weak periodicity law.Furthermore,the processed signals data is input into the fully connected layers.Finally,softmax function is used to accurately identify the acoustic emission signals released by different rocks,and then determine the content of brittle minerals contained in rocks.Through experimental comparison and analysis,1DCNN-BLSTM model embedded with SE module has good anti-noise performance,and the recognition accuracy can reach more than 90 percent,which is better than the traditional deep network models and provides a new way of thinking for rock acoustic emission re-search.展开更多
陇东地区上古生界储层岩屑成分种类复杂且多变,分选性很差,从成分到结构差异性都很大;储层孔隙结构变化大,孔渗关系复杂;复杂孔隙结构导致储层电性受孔隙结构影响大,对流体性质响应弱,流体性质判识难。元素测井是目前定量评价岩石矿物...陇东地区上古生界储层岩屑成分种类复杂且多变,分选性很差,从成分到结构差异性都很大;储层孔隙结构变化大,孔渗关系复杂;复杂孔隙结构导致储层电性受孔隙结构影响大,对流体性质响应弱,流体性质判识难。元素测井是目前定量评价岩石矿物组分精度最高的测井方法,但受成本所限,不能普遍应用,因此利用常规测井曲线定量评价复杂砂岩矿物组分是一种有效的尝试。经实践证明,应用能谱岩石矿物组分定量评价技术,可精细评价岩性,识别低阻气层,其中,陇东地区上古生界解释符合率提高至80%,助力盒8段、山1段发现多个有利含气砂带,新增含气面积4444.1 m 2,预测地质储量2524×108 m 3,取得了良好效果。展开更多
文摘岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。
基金Supported by projects of the National Natural Science Foundation of China(Nos.52074088,52174022,51574088,51404073)Provincial Outstanding Youth Reserve Talent Project of Northeast Petroleum University(No.SJQH202002)+1 种基金2020 Northeast Petroleum University Western Oilfield Development Special Project(No.XBYTKT202001)Postdoctoral Research Start-Up in Heilongjiang Province(Nos.LBH-Q20074,LBH-Q21086).
文摘In order to study fracture mechanism of rocks in different brittle mineral contents,this study pro-poses a method to identify the acoustic emission signal released by rock fracture under different brittle miner-al content(BMC),and then determine the content of brittle matter in rock.To understand related interference such as the noises in the acoustic emission signals released by the rock mass rupture,a 1DCNN-BLSTM network model with SE module is constructed in this study.The signal data is processed through the 1DCNN and BLSTM networks to fully extract the time-series correlation features of the signals,the non-correlated features of the local space and the weak periodicity law.Furthermore,the processed signals data is input into the fully connected layers.Finally,softmax function is used to accurately identify the acoustic emission signals released by different rocks,and then determine the content of brittle minerals contained in rocks.Through experimental comparison and analysis,1DCNN-BLSTM model embedded with SE module has good anti-noise performance,and the recognition accuracy can reach more than 90 percent,which is better than the traditional deep network models and provides a new way of thinking for rock acoustic emission re-search.
文摘陇东地区上古生界储层岩屑成分种类复杂且多变,分选性很差,从成分到结构差异性都很大;储层孔隙结构变化大,孔渗关系复杂;复杂孔隙结构导致储层电性受孔隙结构影响大,对流体性质响应弱,流体性质判识难。元素测井是目前定量评价岩石矿物组分精度最高的测井方法,但受成本所限,不能普遍应用,因此利用常规测井曲线定量评价复杂砂岩矿物组分是一种有效的尝试。经实践证明,应用能谱岩石矿物组分定量评价技术,可精细评价岩性,识别低阻气层,其中,陇东地区上古生界解释符合率提高至80%,助力盒8段、山1段发现多个有利含气砂带,新增含气面积4444.1 m 2,预测地质储量2524×108 m 3,取得了良好效果。