西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中...西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。展开更多
The seafloor vector magnetometer is an effective tool for marine geomagnetic surveys and seafloor magnetotelluric(MT)detection.However,the noise,power consumption,cost,and volume characteristics of existing seafloor v...The seafloor vector magnetometer is an effective tool for marine geomagnetic surveys and seafloor magnetotelluric(MT)detection.However,the noise,power consumption,cost,and volume characteristics of existing seafloor vector magnetometers are insufficient for practical use.Therefore,a low-noise,low-power-consumption seafloor vector magnetometer that can be used for data acquisition of deep-ocean geomagnetic vector components is developed and presented.A seafloor vector magnetometer mainly consists of a fluxgate sensor,data acquisition module,acoustic release module,glass sphere,frame,burn-wire release,and anchor.A new low-noise data acquisition module and a fluxgate sensor greatly reduce power consumption.Furthermore,compact size is achieved by integrating an acoustic telemetry module and replacing the acoustic release with an external burn-wire release.The new design and magnetometer characteristics reduce the volume of the instrument and the cost of hardware considerably,thereby improving the integrity and deployment efficiency of the equipment.Theoretically,it can operate for 90 days underwater at a maximum depth of 6000 m.The seafloor vector magnetometer was tested in the South China Sea and the Philippine Sea and obtained high-quality geomagnetic data.The deep-water environment facilitates magnetic field data measurements,and the magnetometer has an approximate noise level of 10 pT/rt(Hz)@1 Hz,a peak-to-peak value error of 0.2 nT,and approximate power consumption of 200 mW.The fluxgate sensor can measure the magnetic field in the lower frequency band and realize geomagnetic field measurements over prolonged periods.展开更多
文摘西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。
基金Supported by the Guangdong Special Support Talent Team Program(No.2019BT02H594)the National Natural Science Foundation of China(Nos.42174081,41804071,U2244221)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515011526)。
文摘The seafloor vector magnetometer is an effective tool for marine geomagnetic surveys and seafloor magnetotelluric(MT)detection.However,the noise,power consumption,cost,and volume characteristics of existing seafloor vector magnetometers are insufficient for practical use.Therefore,a low-noise,low-power-consumption seafloor vector magnetometer that can be used for data acquisition of deep-ocean geomagnetic vector components is developed and presented.A seafloor vector magnetometer mainly consists of a fluxgate sensor,data acquisition module,acoustic release module,glass sphere,frame,burn-wire release,and anchor.A new low-noise data acquisition module and a fluxgate sensor greatly reduce power consumption.Furthermore,compact size is achieved by integrating an acoustic telemetry module and replacing the acoustic release with an external burn-wire release.The new design and magnetometer characteristics reduce the volume of the instrument and the cost of hardware considerably,thereby improving the integrity and deployment efficiency of the equipment.Theoretically,it can operate for 90 days underwater at a maximum depth of 6000 m.The seafloor vector magnetometer was tested in the South China Sea and the Philippine Sea and obtained high-quality geomagnetic data.The deep-water environment facilitates magnetic field data measurements,and the magnetometer has an approximate noise level of 10 pT/rt(Hz)@1 Hz,a peak-to-peak value error of 0.2 nT,and approximate power consumption of 200 mW.The fluxgate sensor can measure the magnetic field in the lower frequency band and realize geomagnetic field measurements over prolonged periods.