In a recent paper, solution-state ^(19)F NMR spectroscopy was used to probe the conformational dynamics of β-arrestin-1, an essential adaptor and signaling component of the G-protein couple receptor (GPCR) signaling ...In a recent paper, solution-state ^(19)F NMR spectroscopy was used to probe the conformational dynamics of β-arrestin-1, an essential adaptor and signaling component of the G-protein couple receptor (GPCR) signaling pathway. This work reveals a highly complex conformational energy landscape of β-arrestin-1, and illuminates the molecular mechanism of the membrane phosphoinositide PIP2-induced β-arrestin-1 activation at residue level.(https://doi.org/10.1038/s41467-023-43694-1).展开更多
据复旦大学复杂体系多尺度研究院2023年10月9日(Nat Methods,2023 Oct 9.doi:10.1038/s41592-023-02031-6.)报道,诺贝尔奖得主Micheal Levitt教授和马剑鹏教授领导的研究团队开发了一种新型计算方法——OPUS-DSD,该算法不但能够成功地...据复旦大学复杂体系多尺度研究院2023年10月9日(Nat Methods,2023 Oct 9.doi:10.1038/s41592-023-02031-6.)报道,诺贝尔奖得主Micheal Levitt教授和马剑鹏教授领导的研究团队开发了一种新型计算方法——OPUS-DSD,该算法不但能够成功地解析冷冻电子显微镜(Cryo-EM)结构解析技术中因传统方法无法分辨而缺损的生物大分子(比如蛋白质、核酸或蛋白质/核酸复合物等)结构,并且高效精准地分辨出柔性结构域在受测样品中的构象分布。这一新方法能有效建立高精度的生物大分子结构模型,帮助解决药物设计中因目标蛋白结构不准而导致的新药研发失败问题。展开更多
文摘In a recent paper, solution-state ^(19)F NMR spectroscopy was used to probe the conformational dynamics of β-arrestin-1, an essential adaptor and signaling component of the G-protein couple receptor (GPCR) signaling pathway. This work reveals a highly complex conformational energy landscape of β-arrestin-1, and illuminates the molecular mechanism of the membrane phosphoinositide PIP2-induced β-arrestin-1 activation at residue level.(https://doi.org/10.1038/s41467-023-43694-1).
基金supported by the National Key Research and Development Program of China (2021YFA1301504)the National Natural Science Foundation of China (91953101)the Chinese Academy of Sciences Strategic Priority Research Program (XDB37040202)
文摘据复旦大学复杂体系多尺度研究院2023年10月9日(Nat Methods,2023 Oct 9.doi:10.1038/s41592-023-02031-6.)报道,诺贝尔奖得主Micheal Levitt教授和马剑鹏教授领导的研究团队开发了一种新型计算方法——OPUS-DSD,该算法不但能够成功地解析冷冻电子显微镜(Cryo-EM)结构解析技术中因传统方法无法分辨而缺损的生物大分子(比如蛋白质、核酸或蛋白质/核酸复合物等)结构,并且高效精准地分辨出柔性结构域在受测样品中的构象分布。这一新方法能有效建立高精度的生物大分子结构模型,帮助解决药物设计中因目标蛋白结构不准而导致的新药研发失败问题。