Intensity-modulated particle therapy(IMPT)with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion,including range,setup,and target positioning uncertainties.To determine relat...Intensity-modulated particle therapy(IMPT)with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion,including range,setup,and target positioning uncertainties.To determine relative biological effectiveness-weighted dose(RWD)distributions that are resilient to these uncertainties,the reference phase-based four-dimensional(4D)robust optimization(RP-4DRO)and each phase-based 4D robust optimization(EP-4DRO)method in carbon-ion IMPT treatment planning were evaluated and compared.Based on RWD distributions,4DRO methods were compared with 4D conventional optimization using planning target volume(PTV)margins(PTV-based optimization)to assess the effectiveness of the robust optimization methods.Carbon-ion IMPT treatment planning was conducted in a cohort of five lung cancer patients.The results indicated that the EP-4DRO method provided better robustness(P=0.080)and improved plan quality(P=0.225)for the clinical target volume(CTV)in the individual respiratory phase when compared with the PTV-based optimization.Compared with the PTV-based optimization,the RP-4DRO method ensured the robustness(P=0.022)of the dose distributions in the reference breathing phase,albeit with a slight sacrifice of the target coverage(P=0.450).Both 4DRO methods successfully maintained the doses delivered to the organs at risk(OARs)below tolerable levels,which were lower than the doses in the PTV-based optimization(P<0.05).Furthermore,the RP-4DRO method exhibited significantly superior performance when compared with the EP-4DRO method in enhancing overall OAR sparing in either the individual respiratory phase or reference respiratory phase(P<0.05).In general,both 4DRO methods outperformed the PTV-based optimization in terms of OAR sparing and robustness.展开更多
基金supported by National Key Research and Development Program of China(No.2022YFC2401503)National Natural Science Foundation of China(Nos.11875299,61631001,U1532264,and 12005271).
文摘Intensity-modulated particle therapy(IMPT)with carbon ions is comparatively susceptible to various uncertainties caused by breathing motion,including range,setup,and target positioning uncertainties.To determine relative biological effectiveness-weighted dose(RWD)distributions that are resilient to these uncertainties,the reference phase-based four-dimensional(4D)robust optimization(RP-4DRO)and each phase-based 4D robust optimization(EP-4DRO)method in carbon-ion IMPT treatment planning were evaluated and compared.Based on RWD distributions,4DRO methods were compared with 4D conventional optimization using planning target volume(PTV)margins(PTV-based optimization)to assess the effectiveness of the robust optimization methods.Carbon-ion IMPT treatment planning was conducted in a cohort of five lung cancer patients.The results indicated that the EP-4DRO method provided better robustness(P=0.080)and improved plan quality(P=0.225)for the clinical target volume(CTV)in the individual respiratory phase when compared with the PTV-based optimization.Compared with the PTV-based optimization,the RP-4DRO method ensured the robustness(P=0.022)of the dose distributions in the reference breathing phase,albeit with a slight sacrifice of the target coverage(P=0.450).Both 4DRO methods successfully maintained the doses delivered to the organs at risk(OARs)below tolerable levels,which were lower than the doses in the PTV-based optimization(P<0.05).Furthermore,the RP-4DRO method exhibited significantly superior performance when compared with the EP-4DRO method in enhancing overall OAR sparing in either the individual respiratory phase or reference respiratory phase(P<0.05).In general,both 4DRO methods outperformed the PTV-based optimization in terms of OAR sparing and robustness.