Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an...Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.展开更多
森林是碳库,具有强大的固碳增汇功能,在应对气候变化中发挥着重要作用。然而,由于极端高温的影响,频繁发生可燃物自燃而引发森林火灾,除了影响区域水文大气循环过程以外,也给人类带来严重的人员伤亡和经济损失。现有森林火灾预测研究主...森林是碳库,具有强大的固碳增汇功能,在应对气候变化中发挥着重要作用。然而,由于极端高温的影响,频繁发生可燃物自燃而引发森林火灾,除了影响区域水文大气循环过程以外,也给人类带来严重的人员伤亡和经济损失。现有森林火灾预测研究主要侧重可燃物研究和火灾监测等方面,较少关注大尺度地形、气象和人类活动对森林火灾的影响,但这些也是除可燃物外导致森林火灾发生的主要因素。以嘉陵江流域重庆段为研究区,区域内山地受自然火灾影响严峻。基于地理信息系统叠加地理空间因子与火灾分布点获得数据集,构建4种机器学习模型,测试模型性能,评价最优模型进行森林火灾灾害风险制图。研究结果表明,模型评估指标受试者工作曲线下面积(area under the curve,AUC)平均值为95.0%,模型性能梯度提升决策树最优,AUC值为98.3%。利用梯度提升决策树(gradient boosting decision tree,GBDT)模型预测森林火灾风险对防范大尺度森林火灾具有一定的可行性,对山城避灾规划起到借鉴作用,规划引导降低森林火灾风险,从而维护生态平衡和生态系统碳汇能力。展开更多
文摘Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.
文摘森林是碳库,具有强大的固碳增汇功能,在应对气候变化中发挥着重要作用。然而,由于极端高温的影响,频繁发生可燃物自燃而引发森林火灾,除了影响区域水文大气循环过程以外,也给人类带来严重的人员伤亡和经济损失。现有森林火灾预测研究主要侧重可燃物研究和火灾监测等方面,较少关注大尺度地形、气象和人类活动对森林火灾的影响,但这些也是除可燃物外导致森林火灾发生的主要因素。以嘉陵江流域重庆段为研究区,区域内山地受自然火灾影响严峻。基于地理信息系统叠加地理空间因子与火灾分布点获得数据集,构建4种机器学习模型,测试模型性能,评价最优模型进行森林火灾灾害风险制图。研究结果表明,模型评估指标受试者工作曲线下面积(area under the curve,AUC)平均值为95.0%,模型性能梯度提升决策树最优,AUC值为98.3%。利用梯度提升决策树(gradient boosting decision tree,GBDT)模型预测森林火灾风险对防范大尺度森林火灾具有一定的可行性,对山城避灾规划起到借鉴作用,规划引导降低森林火灾风险,从而维护生态平衡和生态系统碳汇能力。