Ulva prolifera is the most common specie causative to green tide,and its growth is sensitive to temperature stress.However,the mechanisms of U.prolifera response to temperature stress remain elusive.In this study,high...Ulva prolifera is the most common specie causative to green tide,and its growth is sensitive to temperature stress.However,the mechanisms of U.prolifera response to temperature stress remain elusive.In this study,high temperature(36℃)stimulus promoted the death of unformed cell wall protoplasts and delayed the division of formed cell wall protoplasts,while low-temperature(4℃)stimulus did not,suggesting that the mechanisms of the response of U.prolifera to high and low temperature stresses are different.Transcriptome results show that proliferation-related genes were differentially expressed under high and low-temperature stresses,especially the proliferating cell nuclear antigen(PCNA)and cyclins(CYCs).Subsequently,the interaction between PCNA and Cyclin A was confirmed by Co-immunoprecipitation,yeast two-hybrid,and so on.Furthermore,high-and low temperature stresses induced the expression of PCNA and Cyclin A in varying of degrees,and activated extracellular signal-regulated kinase(ERK)signal pathway.These results suggest,PCNA,Cyclin A,and ERK signal pathway played important roles in the resistance of U.prolifera to temperature stress.Interestingly,high-temperature stress induced an increase of miR-2916 in abundance,and exhibiting reverse expression of PCNA;and PCNA was target gene of miR-2916,suggesting that miR-2916 protected U.prolifera from high-temperature stress via post-transcriptionally regulation of PCNA.This study laid a foundation for understanding the function of PCNA and Cyclin A,moreover,it has a guiding significance to explore the mechanisms of the response to temperature stress from proliferation-related genes regulatory networks in U.prolifera.展开更多
Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA sh...Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41976109,42276100)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Ulva prolifera is the most common specie causative to green tide,and its growth is sensitive to temperature stress.However,the mechanisms of U.prolifera response to temperature stress remain elusive.In this study,high temperature(36℃)stimulus promoted the death of unformed cell wall protoplasts and delayed the division of formed cell wall protoplasts,while low-temperature(4℃)stimulus did not,suggesting that the mechanisms of the response of U.prolifera to high and low temperature stresses are different.Transcriptome results show that proliferation-related genes were differentially expressed under high and low-temperature stresses,especially the proliferating cell nuclear antigen(PCNA)and cyclins(CYCs).Subsequently,the interaction between PCNA and Cyclin A was confirmed by Co-immunoprecipitation,yeast two-hybrid,and so on.Furthermore,high-and low temperature stresses induced the expression of PCNA and Cyclin A in varying of degrees,and activated extracellular signal-regulated kinase(ERK)signal pathway.These results suggest,PCNA,Cyclin A,and ERK signal pathway played important roles in the resistance of U.prolifera to temperature stress.Interestingly,high-temperature stress induced an increase of miR-2916 in abundance,and exhibiting reverse expression of PCNA;and PCNA was target gene of miR-2916,suggesting that miR-2916 protected U.prolifera from high-temperature stress via post-transcriptionally regulation of PCNA.This study laid a foundation for understanding the function of PCNA and Cyclin A,moreover,it has a guiding significance to explore the mechanisms of the response to temperature stress from proliferation-related genes regulatory networks in U.prolifera.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY22C190001)the Natural Science Foundation of Ningbo Government(No.2021J114)+3 种基金the Ningbo Science and Technology Research Projects,China(No.2019B10006)the Zhejiang Provincial Department of Education Scientific Research Project(No.Y202249030)the Earmarked Fund for CARS-49partly sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘Gamma-aminobutyric acid(GABA),widely existing in different organisms,is rapidly accumulated in plants in response to environmental stresses.The main biosynthesis and degradation pathways of GABA constitute the GABA shunt,which is tied to the tricarboxylic acid(TCA)cycle.GABA transaminase(GABA-T)and succinate semialdehyde dehydrogenase(SSADH)are two essential enzymes for the GABA degradation pathway.While there are abundant studies on GABA shunt in higher plants at the physiological and genetic levels,research on its role in microalgae remains limited.This study aimed at exploring the function of GABA-T and SSADH genes in Isochrysis zhanjiangensis,an important diet microalga,under different stresses.We cloned two GABA-T genes,IzGABA-T1 and IzGABA-T2,and one SSADH gene IzSSADH from Isochrysis zhanjiangensis and conducted heterologous expression experiments.The results showed that the overexpression of IzGABA-T1 or IzGABA-T2 enhanced the survival rates of yeast transformants under heat or NaCl stress,while the overexpression of IzSSADH improved yeast tolerance to NaCl stress but had no obvious effect on heat stress.Additionally,the results of quantitative real-time polymerase chain reaction(qPCR)showed that IzGABA-T1 transcription increased in the HT(salinity 25,35℃)and LS(salinity 15,25℃)groups.At 24 h,the IzGABA-T2 transcriptions increased in the HT,LS,and HS(salinity 35,25℃)groups,but their transcription levels decreased in all groups at 48 h.IzSSADH transcription increased in the LS group.These results suggest that IzGABA-T1,IzGABA-T2,and IzSSADH are associated with temperature and salinity stresses and possess a certain preference for different stresses.