Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,...Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,the formidable obstacle impeding the commercialization of this cutting-edge fuel alternative lies in the cost associated with its production.In this study,an engineered strain Escherichia coli(E.coli)showcasing harmonized coexpression of a lipase(from Thermomyces lanuginosus lipase,TLL)and a fatty acid photodecarboxylase(from Chlorella variabilis,CvFAP)was first constructed to transform triglycerides into alkanes.The potential of E.coli BL21(DE3)/pRSFDuet-1-TLL-CvFAP for alkane synthesis was evaluated with tripalmitin as a model substrate under various process conditions.Following a comprehensive examination of the reaction parameters,the scope of the biotransformation was expanded to‘real’substrates(vegetable oils).The results showed that bioderived oils can be transformed into alkanes with high yields(0.80-10.20 mmol·L^(-1))under mild conditions(35℃,pH 8.0,and 36 h)and blue light illumination.The selected processes were performed on an increased lab scale(up to 100 ml)with up to 24.77 mmol·L^(-1) tripalmitin,leading to a yield of 18.89 mmol·L^(-1) pentadecane.With the employment of a method for efficiently producing alkanes under mild conditions and a simple procedure to isolate alkanes from the reaction system,the utilization of sustainable biomass as a fundamental feedstock emerges as the primary solution to lower the cost of alkane-based biodiesel.Thus,this study proposes a readily implementable and highly effective approach for alkane-based biodiesel production.展开更多
对异养小球藻进行常压室温等离子体(Atmospheric and Room Temperature Plasma,ARTP)诱变确定最佳诱变条件,在最佳诱变条件下筛选突变株,并开展突变株的摇瓶培养再验证试验、遗传稳定性试验、50 L发酵罐试验。结果表明,异养小球藻的最...对异养小球藻进行常压室温等离子体(Atmospheric and Room Temperature Plasma,ARTP)诱变确定最佳诱变条件,在最佳诱变条件下筛选突变株,并开展突变株的摇瓶培养再验证试验、遗传稳定性试验、50 L发酵罐试验。结果表明,异养小球藻的最佳致死时间为50 s;得到6株突变株,且其细胞数多于出发菌株、质量浓度明显高于出发菌株;突变性能可以稳定遗传,突变株可提前24 h到达发酵终点,发酵液中油脂产量高于出发菌株。展开更多
The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.py...The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.pyrenoidosa biomass and lipid production in an 8-d batch culture.The concentration of 10 mmol/L of Ala was optimum and increased the microalgal cell biomass and lipid content by 39.3%and 21.4%,respectively,compared with that in the control(0-mmol/L Ala).Ala supplementation reduced photosynthetic activity while boosting respiratory activity and pyruvate levels,indicating that C.pyrenoidosa used exogenous Ala for biomass accumulation through the respiratory metabolic process.The accelerated respiratory metabolism due to Ala supplementation elevated the substrate pool and improved the lipogenic gene expression,promoting lipid production at last.This study provided a novel method for increasing biomass accumulation and lipid production and elucidated the role of Ala in regulating lipid production.展开更多
基金This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry,and Energy(MOTIE)of the Republic of Korea(20194110300040,20173010092470).This work was supported partially by the Research Center for Precision Environmental Medicine,Kaohsiung Medical University,Kaohsiung,Taiwan,China,from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,China and by Kaohsiung Medical University Research Center Grant(KMU-TC113A01),Taiwan,China.This research work was supported financially from the Science and Technology Council,Taiwan,China.This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00219497).
基金financially supported by the National Natural Science Foundation of China(42376097)Guangdong Basic and Applied Basic Research Foundation(2023A1515030226,2021A1515010829).
文摘Alkane-based biodiesel is considered the next generation of biodiesel owing to its potential environmental benefits and the fact that it exhibits much higher specific caloric values than traditional biodiesel.However,the formidable obstacle impeding the commercialization of this cutting-edge fuel alternative lies in the cost associated with its production.In this study,an engineered strain Escherichia coli(E.coli)showcasing harmonized coexpression of a lipase(from Thermomyces lanuginosus lipase,TLL)and a fatty acid photodecarboxylase(from Chlorella variabilis,CvFAP)was first constructed to transform triglycerides into alkanes.The potential of E.coli BL21(DE3)/pRSFDuet-1-TLL-CvFAP for alkane synthesis was evaluated with tripalmitin as a model substrate under various process conditions.Following a comprehensive examination of the reaction parameters,the scope of the biotransformation was expanded to‘real’substrates(vegetable oils).The results showed that bioderived oils can be transformed into alkanes with high yields(0.80-10.20 mmol·L^(-1))under mild conditions(35℃,pH 8.0,and 36 h)and blue light illumination.The selected processes were performed on an increased lab scale(up to 100 ml)with up to 24.77 mmol·L^(-1) tripalmitin,leading to a yield of 18.89 mmol·L^(-1) pentadecane.With the employment of a method for efficiently producing alkanes under mild conditions and a simple procedure to isolate alkanes from the reaction system,the utilization of sustainable biomass as a fundamental feedstock emerges as the primary solution to lower the cost of alkane-based biodiesel.Thus,this study proposes a readily implementable and highly effective approach for alkane-based biodiesel production.
文摘对异养小球藻进行常压室温等离子体(Atmospheric and Room Temperature Plasma,ARTP)诱变确定最佳诱变条件,在最佳诱变条件下筛选突变株,并开展突变株的摇瓶培养再验证试验、遗传稳定性试验、50 L发酵罐试验。结果表明,异养小球藻的最佳致死时间为50 s;得到6株突变株,且其细胞数多于出发菌株、质量浓度明显高于出发菌株;突变性能可以稳定遗传,突变株可提前24 h到达发酵终点,发酵液中油脂产量高于出发菌株。
基金Supported by the National Natural Science Foundation of China(Nos.32002411,42276189)the Innovation and Entrepreneurship Project for College Students of Hohai University(No.2022102941027)the Jiangsu Innovation Center for Marine Bioresources(No.822153216)。
文摘The function of exogenous alanine(Ala)in regulating biomass accumulation,lipid production,photosynthesis,and respiration in Chlorella pyrenoidosa was studied.Result shows that the supplementation of Ala increased C.pyrenoidosa biomass and lipid production in an 8-d batch culture.The concentration of 10 mmol/L of Ala was optimum and increased the microalgal cell biomass and lipid content by 39.3%and 21.4%,respectively,compared with that in the control(0-mmol/L Ala).Ala supplementation reduced photosynthetic activity while boosting respiratory activity and pyruvate levels,indicating that C.pyrenoidosa used exogenous Ala for biomass accumulation through the respiratory metabolic process.The accelerated respiratory metabolism due to Ala supplementation elevated the substrate pool and improved the lipogenic gene expression,promoting lipid production at last.This study provided a novel method for increasing biomass accumulation and lipid production and elucidated the role of Ala in regulating lipid production.