目前国内有关压缩天然气汽车高压管路布置方面的工艺规范较少,对于高压管路布局走向、管路长度、管路直径等设计参数的选择及其对储气的利用率、管路中供气稳定性等方面的影响尚缺乏深入研究。为此,采用计算流体力学数值模拟方法,计算...目前国内有关压缩天然气汽车高压管路布置方面的工艺规范较少,对于高压管路布局走向、管路长度、管路直径等设计参数的选择及其对储气的利用率、管路中供气稳定性等方面的影响尚缺乏深入研究。为此,采用计算流体力学数值模拟方法,计算分析了某型压缩天然气公交车供气管路内天然气的流场特性,发现管路的长度、曲率、半径以及气瓶阀通孔结构是影响流场特性的主要因素。研究结果表明:1气瓶阀内部流场存在涡流;2管路内部压降与管路长度呈线性关系;3不同工况下管路内部流场速度与压降呈正相关关系;4管路内部流场压降随着管路半径的增大而减小;5弯管曲率半径越大,内部流场速度和压力在拐弯处过渡越平顺。据此进行了以下优化设计:1优化气瓶阀内部通孔结构,解决了原气瓶阀内部存在涡流的现象;2缩短管路长度可以有效减小管路内部压力损失;3高负荷不利于提高气瓶中天然气的使用率;4增大管路半径可以有效降低管路内部流场的压力损失。优化后整个CNG公共汽车的高压管路压力损失减小了195.6 k Pa。展开更多
文摘目前国内有关压缩天然气汽车高压管路布置方面的工艺规范较少,对于高压管路布局走向、管路长度、管路直径等设计参数的选择及其对储气的利用率、管路中供气稳定性等方面的影响尚缺乏深入研究。为此,采用计算流体力学数值模拟方法,计算分析了某型压缩天然气公交车供气管路内天然气的流场特性,发现管路的长度、曲率、半径以及气瓶阀通孔结构是影响流场特性的主要因素。研究结果表明:1气瓶阀内部流场存在涡流;2管路内部压降与管路长度呈线性关系;3不同工况下管路内部流场速度与压降呈正相关关系;4管路内部流场压降随着管路半径的增大而减小;5弯管曲率半径越大,内部流场速度和压力在拐弯处过渡越平顺。据此进行了以下优化设计:1优化气瓶阀内部通孔结构,解决了原气瓶阀内部存在涡流的现象;2缩短管路长度可以有效减小管路内部压力损失;3高负荷不利于提高气瓶中天然气的使用率;4增大管路半径可以有效降低管路内部流场的压力损失。优化后整个CNG公共汽车的高压管路压力损失减小了195.6 k Pa。