Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene...Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene(TCAET)was synthesized specifically for the capture of Au(Ⅲ)and Pd(Ⅱ)from HCl medium by liquid-liquid extraction.In a 0.1 mol·L^(-1)HCl medium,the transfer of Au(Ⅲ)and Pd(Ⅱ)from the aqueous phase to the organic phase was highly efficient,with a transfer ratio of 100%for Au(Ⅲ)and 98%for Pd(Ⅱ).Furthermore,the extraction equilibrium time for Au(Ⅲ)was just 5 min.Job's method data demonstrated that TCAET formed complexes with Au(Ⅲ)and Pd(Ⅱ)in a ratio of 2:3 and 1:1,respectively,during the extraction process.TCAET showed high selectivity toward Pd(Ⅱ)and Au(Ⅲ)over other competing metal ions.Moreover,both Au(Ⅲ)and Pd(Ⅱ)could be successfully stripped from the loaded organic phases with a 1.0 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl and 0.5 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl,respectively.Results obtained from five consecutive extraction-stripping cycles showed good reusability of TCAET toward Au(Ⅲ)and Pd(Ⅱ)recovery.The conclusion can provide a certain reference for thiacalixarene in the recovery of precious metal species.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electr...Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.展开更多
开展生物法处理金矿含氰废水同步收金技术研究,通过改良缺氧^(-)好氧生物处理工艺,成功驯化增殖了以硫杆菌、特吕珀菌、假单胞菌为主的CN^(-)、SCN^(-)高效降解菌群。在工业应用上,生物法对SCN^(-)、COD、CN^(-)、NH_(3)-N的平均去除率...开展生物法处理金矿含氰废水同步收金技术研究,通过改良缺氧^(-)好氧生物处理工艺,成功驯化增殖了以硫杆菌、特吕珀菌、假单胞菌为主的CN^(-)、SCN^(-)高效降解菌群。在工业应用上,生物法对SCN^(-)、COD、CN^(-)、NH_(3)-N的平均去除率分别为99.99%、97.54%、93.92%和98.92%,处理后的出水各项污染物指标远低于《污水综合排放标准》(GB 8978—1996)一级标准。微生物在降解废水污染物的同时,通过自身的氧化、吸附、絮凝沉降等作用,对起始浓度低的混合含金废水进行金回收,金的回收率可达到91%,富集金品位300~400 g t,不仅深度处理了废水中各项污染物,同时回收了有价金属,是一种环境友好且无公害的含氰废水处理技术。展开更多
基金Financial supports from the National Key Research and Development Program of China (No. 2018YFE0110200)the Key Research and Development Program of Hunan Province, China (No. 2020SK2125)。
基金supported by the National Natural Science Foundation of China(U20A20268)Natural Science Foundation of Hunan Province(2020JJ1004)Hunan Provincial Innovation Foundation for Postgraduate(CX20211190)。
文摘Gold(Au)and palladium(Pd)play an increasing role in the production and human life;Therefore,it is of great significance to study their recovery.A 5,11,17,23-tetra-ethylthio-25,26,27,28-tetra-hydroxyl thiacalix[4]arene(TCAET)was synthesized specifically for the capture of Au(Ⅲ)and Pd(Ⅱ)from HCl medium by liquid-liquid extraction.In a 0.1 mol·L^(-1)HCl medium,the transfer of Au(Ⅲ)and Pd(Ⅱ)from the aqueous phase to the organic phase was highly efficient,with a transfer ratio of 100%for Au(Ⅲ)and 98%for Pd(Ⅱ).Furthermore,the extraction equilibrium time for Au(Ⅲ)was just 5 min.Job's method data demonstrated that TCAET formed complexes with Au(Ⅲ)and Pd(Ⅱ)in a ratio of 2:3 and 1:1,respectively,during the extraction process.TCAET showed high selectivity toward Pd(Ⅱ)and Au(Ⅲ)over other competing metal ions.Moreover,both Au(Ⅲ)and Pd(Ⅱ)could be successfully stripped from the loaded organic phases with a 1.0 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl and 0.5 mol·L^(-1)thiourea in 0.5 mol·L^(-1)HCl,respectively.Results obtained from five consecutive extraction-stripping cycles showed good reusability of TCAET toward Au(Ⅲ)and Pd(Ⅱ)recovery.The conclusion can provide a certain reference for thiacalixarene in the recovery of precious metal species.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
基金supported by the Science and Technology Foundation of Guizhou Province,China(No.[2020]1Y163)the National Natural Science Foundation of China(No.41827802).
文摘Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.
文摘开展生物法处理金矿含氰废水同步收金技术研究,通过改良缺氧^(-)好氧生物处理工艺,成功驯化增殖了以硫杆菌、特吕珀菌、假单胞菌为主的CN^(-)、SCN^(-)高效降解菌群。在工业应用上,生物法对SCN^(-)、COD、CN^(-)、NH_(3)-N的平均去除率分别为99.99%、97.54%、93.92%和98.92%,处理后的出水各项污染物指标远低于《污水综合排放标准》(GB 8978—1996)一级标准。微生物在降解废水污染物的同时,通过自身的氧化、吸附、絮凝沉降等作用,对起始浓度低的混合含金废水进行金回收,金的回收率可达到91%,富集金品位300~400 g t,不仅深度处理了废水中各项污染物,同时回收了有价金属,是一种环境友好且无公害的含氰废水处理技术。