以6061铝合金磁控钨极氩弧焊(GTAW)的焊接电弧为研究对象,建立GTAW三维模型,对比分析了无外加磁场和外加横向磁场作用下焊接电弧的电流密度、洛伦兹力以及温度场的变化规律。结果表明,未施加磁场时,电弧具有高度的对称性,内部电流密度...以6061铝合金磁控钨极氩弧焊(GTAW)的焊接电弧为研究对象,建立GTAW三维模型,对比分析了无外加磁场和外加横向磁场作用下焊接电弧的电流密度、洛伦兹力以及温度场的变化规律。结果表明,未施加磁场时,电弧具有高度的对称性,内部电流密度最大值达到了2.66×10^(7)A/m^(2),洛伦兹力最大值达到了1.21×10^(5)N,电弧最高温度达到14862.4 K,径向上电流密度呈单峰分布,洛伦兹力呈双峰分布。随着横向磁场的施加,电弧发生偏转,洛伦兹力迅速增大,在磁场强度为0.2 m T时,洛伦兹力最大值增大到1.51×10^(5)N。偏转后电弧弧长增加,电势增大。展开更多
综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴...综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴状过渡,甚至在弧压很低时,呈现短路过渡形态。该工艺电弧发生偏向冷丝的位移,弧长变短甚至发生短路,与冷丝送进速率比增高及冷丝在电弧中产生大量金属蒸气时弧柱电阻下降有关。在具有富氩混合保护气体的相同工艺参数下,CWGMAW转变电流比GMAW降低了4%~7%。焊接工艺参数对CW-GMAW和GMAW工艺熔滴过渡形态的影响规律大致相近,但前者因涉及冷丝送进速率比和电极焊丝送进速度,以及它们的匹配等,使焊接电流的影响更为复杂。展开更多
针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳...针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。展开更多
与典型冷金属过渡(Cold Metal Transfer,CMT)电参数波形相比,改进后CMT电参数波形的短路过渡阶段新增了一个脉冲阶段,从而保证了稳定的镁合金熔敷沉积过程。通过分析镁合金的性能及CMT短路过渡阶段的熔滴受力情况,探究了在典型CMT电参...与典型冷金属过渡(Cold Metal Transfer,CMT)电参数波形相比,改进后CMT电参数波形的短路过渡阶段新增了一个脉冲阶段,从而保证了稳定的镁合金熔敷沉积过程。通过分析镁合金的性能及CMT短路过渡阶段的熔滴受力情况,探究了在典型CMT电参数波形下镁合金熔敷时产生飞溅的原因,同时研究了改进后CMT电参数波形下短路基值阶段电流值I_(sc2)对熔滴过渡稳定性的影响。结果表明,短路峰值阶段可以促使熔滴在短路过渡时形成颈缩,从而有助于实现稳定无飞溅的熔滴过渡过程。当I_(sc2)较小时,会导致形成的颈缩较粗,液桥难以自然断裂;而当I_(sc2)较大时,颈缩处会具有较大的电流密度,从而导致液桥容易在大热量的作用下气化爆断。使用改进后CMT电参数波形进行镁合金熔敷时,在12 m/min的送丝速度下,仍可以保证熔敷过程稳定可控。展开更多
文摘以6061铝合金磁控钨极氩弧焊(GTAW)的焊接电弧为研究对象,建立GTAW三维模型,对比分析了无外加磁场和外加横向磁场作用下焊接电弧的电流密度、洛伦兹力以及温度场的变化规律。结果表明,未施加磁场时,电弧具有高度的对称性,内部电流密度最大值达到了2.66×10^(7)A/m^(2),洛伦兹力最大值达到了1.21×10^(5)N,电弧最高温度达到14862.4 K,径向上电流密度呈单峰分布,洛伦兹力呈双峰分布。随着横向磁场的施加,电弧发生偏转,洛伦兹力迅速增大,在磁场强度为0.2 m T时,洛伦兹力最大值增大到1.51×10^(5)N。偏转后电弧弧长增加,电势增大。
文摘综述了涉及工程应用的冷丝熔化极气体保护焊(Cold wire gas metal arc welding,CW-GMAW)熔滴过渡形态特征。结果表明,在大电流、强规范、富氩混合气体保护下,CW-GMAW工艺的熔滴过渡形态呈喷射过渡;当电流较小、电弧电压较低时,可能为滴状过渡,甚至在弧压很低时,呈现短路过渡形态。该工艺电弧发生偏向冷丝的位移,弧长变短甚至发生短路,与冷丝送进速率比增高及冷丝在电弧中产生大量金属蒸气时弧柱电阻下降有关。在具有富氩混合保护气体的相同工艺参数下,CWGMAW转变电流比GMAW降低了4%~7%。焊接工艺参数对CW-GMAW和GMAW工艺熔滴过渡形态的影响规律大致相近,但前者因涉及冷丝送进速率比和电极焊丝送进速度,以及它们的匹配等,使焊接电流的影响更为复杂。
文摘针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。
文摘与典型冷金属过渡(Cold Metal Transfer,CMT)电参数波形相比,改进后CMT电参数波形的短路过渡阶段新增了一个脉冲阶段,从而保证了稳定的镁合金熔敷沉积过程。通过分析镁合金的性能及CMT短路过渡阶段的熔滴受力情况,探究了在典型CMT电参数波形下镁合金熔敷时产生飞溅的原因,同时研究了改进后CMT电参数波形下短路基值阶段电流值I_(sc2)对熔滴过渡稳定性的影响。结果表明,短路峰值阶段可以促使熔滴在短路过渡时形成颈缩,从而有助于实现稳定无飞溅的熔滴过渡过程。当I_(sc2)较小时,会导致形成的颈缩较粗,液桥难以自然断裂;而当I_(sc2)较大时,颈缩处会具有较大的电流密度,从而导致液桥容易在大热量的作用下气化爆断。使用改进后CMT电参数波形进行镁合金熔敷时,在12 m/min的送丝速度下,仍可以保证熔敷过程稳定可控。