为了解决现行标准中转向架构架焊缝容许疲劳强度数据存在的问题,针对当前的各种结构应力方法和数据,就其在焊缝结构应力测试、容许应力幅、设计值存活率、平均应力修正、焊缝修整疲劳强度提高及极限容许应力确定等方面的关系和差异进行...为了解决现行标准中转向架构架焊缝容许疲劳强度数据存在的问题,针对当前的各种结构应力方法和数据,就其在焊缝结构应力测试、容许应力幅、设计值存活率、平均应力修正、焊缝修整疲劳强度提高及极限容许应力确定等方面的关系和差异进行对比,并构建了Q345钢焊缝基于实测结构应力的疲劳图和S-N曲线.结果表明:转向架构架焊缝结构应力的实测可沿用B12/RP17规定的方法,即采用6 mm长的应变片并将其前端紧靠焊趾边缘布置;建议借鉴IIW (Intemational Institute of Welding) FAT100和FAT90两组基本数据,并应用其平均应力和焊缝修整疲劳强度提高的修正方法,构建更加合理的基于实测结构应力的焊缝容许疲劳强度数据;对于2×10~6次循环数对应的疲劳图,极限容许应力可参考DVS 1612规定的方法,由母材屈服极限除以相应的安全系数确定.展开更多
文摘为了解决现行标准中转向架构架焊缝容许疲劳强度数据存在的问题,针对当前的各种结构应力方法和数据,就其在焊缝结构应力测试、容许应力幅、设计值存活率、平均应力修正、焊缝修整疲劳强度提高及极限容许应力确定等方面的关系和差异进行对比,并构建了Q345钢焊缝基于实测结构应力的疲劳图和S-N曲线.结果表明:转向架构架焊缝结构应力的实测可沿用B12/RP17规定的方法,即采用6 mm长的应变片并将其前端紧靠焊趾边缘布置;建议借鉴IIW (Intemational Institute of Welding) FAT100和FAT90两组基本数据,并应用其平均应力和焊缝修整疲劳强度提高的修正方法,构建更加合理的基于实测结构应力的焊缝容许疲劳强度数据;对于2×10~6次循环数对应的疲劳图,极限容许应力可参考DVS 1612规定的方法,由母材屈服极限除以相应的安全系数确定.