为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力...为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力。对提取到的图像进行图像处理,使得更好的提取车顶焊缝的特征信息从而得到特征点坐标,采用B样条曲线法对机械臂进行轨迹规划。改进后的算法相较原YOLOv5算法的mAP值提升了6.76%,针对该系统进行实验并验证了提出的基于深度学习的双目视觉车顶焊缝涂胶机械臂系统的有效性。展开更多
文摘为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力。对提取到的图像进行图像处理,使得更好的提取车顶焊缝的特征信息从而得到特征点坐标,采用B样条曲线法对机械臂进行轨迹规划。改进后的算法相较原YOLOv5算法的mAP值提升了6.76%,针对该系统进行实验并验证了提出的基于深度学习的双目视觉车顶焊缝涂胶机械臂系统的有效性。
文摘针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resnet的特征表达能力;其次,利用图生成层学习Resnet的特征数据并挖掘样本结构特征之间的关系来构造实例图;然后,利用图卷积网络(graph convolutional network, GCN)对实例图进行建模;最后,利用域判别器和局部最大平均差异(local maximum mean discrepancy, LMMD)对齐子域和全局域之间的分布并通过标签分类网络完成故障分类。通过在SQI-MFS轴承数据集的实验结果证明了所提出的DAGRESL模型能够精准地区分变工况轴承故障类型,有效解决了滚动轴承在变工况环境中网络特征提取能力不足的问题。