针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄...针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄轴承内圈左侧与右侧轮廓图像,对图像进行预处理。在此基础上,通过角点检测融合像素扫描的方法实现自适应ROI选取,解决了因轴承内圈移动引起的小面积ROI边缘误判问题;使用Canny算子提取ROI的像素级边缘,再用改进的Zernike矩算法得到亚像素级边缘。最后,分别对ROI中提取的边缘进行最小二乘圆拟合和直线拟合,根据像素当量与视场间隔将图像中各尺寸转换为轴承内圈实际尺寸。实验结果表明:所提方法测量的标准不确定度低于0.005 mm,满足轴承尺寸高精度检测的要求,对于实现轴承检测的自动化有实际意义。展开更多
偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同...偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同偏振方向图像之间的联系特征;引入特征增强模块对多层次特征进行进一步增强;采用跨层级特征聚合网络,充分利用不同尺度的特征信息,完成特征的有效聚合,最终联合多通道特征信息输出检测结果。构建包含10类目标的低空伪装目标偏振图像数据集PICO(Polarization Image of Camouflaged Objects)。在PICO数据集上的实验结果表明,新方法可以有效检测伪装目标,mAP_(0.5:0.95)达到52.0%,mAP_(0.5)达到91.5%,检测速率达到55.0帧/s,满足实时性要求。展开更多
文摘针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄轴承内圈左侧与右侧轮廓图像,对图像进行预处理。在此基础上,通过角点检测融合像素扫描的方法实现自适应ROI选取,解决了因轴承内圈移动引起的小面积ROI边缘误判问题;使用Canny算子提取ROI的像素级边缘,再用改进的Zernike矩算法得到亚像素级边缘。最后,分别对ROI中提取的边缘进行最小二乘圆拟合和直线拟合,根据像素当量与视场间隔将图像中各尺寸转换为轴承内圈实际尺寸。实验结果表明:所提方法测量的标准不确定度低于0.005 mm,满足轴承尺寸高精度检测的要求,对于实现轴承检测的自动化有实际意义。
文摘偏振可以提高无人机的自主侦察能力,但易受到探测角度和目标材质的影响,从而降低偏振检测的鲁棒性。为此,提出一种基于偏振图像的低空伪装目标实时检测算法YOLO-P,采用融合多偏振方向信息的编码图像作为输入,应用三维卷积模块提取不同偏振方向图像之间的联系特征;引入特征增强模块对多层次特征进行进一步增强;采用跨层级特征聚合网络,充分利用不同尺度的特征信息,完成特征的有效聚合,最终联合多通道特征信息输出检测结果。构建包含10类目标的低空伪装目标偏振图像数据集PICO(Polarization Image of Camouflaged Objects)。在PICO数据集上的实验结果表明,新方法可以有效检测伪装目标,mAP_(0.5:0.95)达到52.0%,mAP_(0.5)达到91.5%,检测速率达到55.0帧/s,满足实时性要求。