分析了显微视觉与计算机宏观视觉的特性,得出显微视觉下模糊效果是由几何光学和波动光学两部分造成的结论,并用标定实验验证了显微视觉下扩散参数与物距呈线性关系这一假设。研究了现有基于聚焦的自动调焦DFD(Depth from Focus)方法,提...分析了显微视觉与计算机宏观视觉的特性,得出显微视觉下模糊效果是由几何光学和波动光学两部分造成的结论,并用标定实验验证了显微视觉下扩散参数与物距呈线性关系这一假设。研究了现有基于聚焦的自动调焦DFD(Depth from Focus)方法,提出了显微视觉下一种新型的基于离焦(Depth from Defocus)的快速自动调焦算法,该算法只要给定两幅模糊图像,就可直接计算出目标聚焦平面位置。实验结果显示,该方法的聚焦速度比传统DFF方法(本文选择SML法)快2~4倍。改进了的DFD算法提高了自动调焦性能,增强了显微光学鲁棒性,调焦精度较高,且具有较好的实用性。展开更多
为了扩大原子力显微镜(Atomic Force Microscope,AFM)使用范围,研制了一套大范围高速AFM系统。针对大范围高速扫描时Z方向控制问题,提出了前馈反馈混合控制方法。前馈控制包括自动调平前馈和基于前一行扫描前馈,前者通过多线扫描确定样...为了扩大原子力显微镜(Atomic Force Microscope,AFM)使用范围,研制了一套大范围高速AFM系统。针对大范围高速扫描时Z方向控制问题,提出了前馈反馈混合控制方法。前馈控制包括自动调平前馈和基于前一行扫描前馈,前者通过多线扫描确定样品倾斜位置,将所有扫描点的倾斜位移差用函数式表达,然后将其换算为Z向驱动电压后驱动下扫描器运动;后者利用前一行扫描高度数据作为当前行Z向扫描器驱动的参考输入。反馈控制为在普通比例-积分(PI)控制基础上改进的动态P参数PI控制,P参数设置与误差大小有关。实验结果表明:采用本控制方法最大控制误差由40.17nm减小为6.01nm,误差均方根值由22.85nm减小为2.01nm,明显抑制了误差信号,提高了Z向控制效果,获得了更精确的高度图像。展开更多
文摘分析了显微视觉与计算机宏观视觉的特性,得出显微视觉下模糊效果是由几何光学和波动光学两部分造成的结论,并用标定实验验证了显微视觉下扩散参数与物距呈线性关系这一假设。研究了现有基于聚焦的自动调焦DFD(Depth from Focus)方法,提出了显微视觉下一种新型的基于离焦(Depth from Defocus)的快速自动调焦算法,该算法只要给定两幅模糊图像,就可直接计算出目标聚焦平面位置。实验结果显示,该方法的聚焦速度比传统DFF方法(本文选择SML法)快2~4倍。改进了的DFD算法提高了自动调焦性能,增强了显微光学鲁棒性,调焦精度较高,且具有较好的实用性。
文摘为了扩大原子力显微镜(Atomic Force Microscope,AFM)使用范围,研制了一套大范围高速AFM系统。针对大范围高速扫描时Z方向控制问题,提出了前馈反馈混合控制方法。前馈控制包括自动调平前馈和基于前一行扫描前馈,前者通过多线扫描确定样品倾斜位置,将所有扫描点的倾斜位移差用函数式表达,然后将其换算为Z向驱动电压后驱动下扫描器运动;后者利用前一行扫描高度数据作为当前行Z向扫描器驱动的参考输入。反馈控制为在普通比例-积分(PI)控制基础上改进的动态P参数PI控制,P参数设置与误差大小有关。实验结果表明:采用本控制方法最大控制误差由40.17nm减小为6.01nm,误差均方根值由22.85nm减小为2.01nm,明显抑制了误差信号,提高了Z向控制效果,获得了更精确的高度图像。