航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value dec...航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。展开更多
文摘航空发动机叶尖间隙是监控其运行状态的有效参数,现有间隙测量方法很难满足超高转速下间隙距离的奈奎斯特采样率,因此无法有效提取精确的叶尖间隙值。本文基于压缩感知原理,针对间隙距离数据特征提出一种采用K-SVD(K-singular value decomposition)字典训练稀疏基的数据重构方法,该方法首先构建出K-SVD字典稀疏基对数据进行稀疏化表示,然后使用m序列高斯随机矩阵对数据进行压缩观测,最后基于压缩欠采样观测值使用正交匹配追踪算法对数据进行重构,进而精确提取叶尖间隙值。实验结果表明,在欠采样条件下间隙距离数据可精确恢复重构,与高采样率下的间隙数据相比,重构误差不超过0.02 mm。