在火炮点火或汽车发动机点火中,微波点火装置已成为热门研究方向之一,其中微波谐振腔点火装置是最基本的点火装置。基于谐振腔这一简单电子器件结构,在传统时域有限差分法(fi⁃nite difference time domain,FDTD)基础上提出一种快速时域...在火炮点火或汽车发动机点火中,微波点火装置已成为热门研究方向之一,其中微波谐振腔点火装置是最基本的点火装置。基于谐振腔这一简单电子器件结构,在传统时域有限差分法(fi⁃nite difference time domain,FDTD)基础上提出一种快速时域有限差分法用来对谐振腔进行电磁仿真。新方法将麦克斯韦旋度方程的差分形式写作矩阵形式,将谐振腔的结构、入射波的频率等信息包含在矩阵中。该方法可以通过求解矩阵幂快速求解从而得到目标时间的瞬时电场值,相较传统FDTD,新方法在长时间仿真谐振腔电场分布具有巨大时间优势。仿真实验表明,对于相同的谐振腔,在仿真时间长度大于100000个时间步长时,该方法的时间效率可提高数倍甚至百倍,仿真结果仍然保持与传统方法的一致性。展开更多
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
文摘在火炮点火或汽车发动机点火中,微波点火装置已成为热门研究方向之一,其中微波谐振腔点火装置是最基本的点火装置。基于谐振腔这一简单电子器件结构,在传统时域有限差分法(fi⁃nite difference time domain,FDTD)基础上提出一种快速时域有限差分法用来对谐振腔进行电磁仿真。新方法将麦克斯韦旋度方程的差分形式写作矩阵形式,将谐振腔的结构、入射波的频率等信息包含在矩阵中。该方法可以通过求解矩阵幂快速求解从而得到目标时间的瞬时电场值,相较传统FDTD,新方法在长时间仿真谐振腔电场分布具有巨大时间优势。仿真实验表明,对于相同的谐振腔,在仿真时间长度大于100000个时间步长时,该方法的时间效率可提高数倍甚至百倍,仿真结果仍然保持与传统方法的一致性。
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.