可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信...可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信号的分析频谱。针对上述问题,提出了基于准同步采样的二次加权傅里叶变换方法,所提方法将准同步采样改进后与加权傅里叶变换结合,通过对原始信号进行两次不同的加权和分步修正,实现了对谐波信号的准确测量。经实验验证,使用该方法对谐波电压测量分析,测量标准偏差可达10^(-7)量级。展开更多
非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地...非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PSTimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据.展开更多
针对云端单一集中数据处理时效性低、架空线路上鸟巢检测精度不高、模型对边缘计算设备算力高消耗以及目标定位不准确的问题,提出了一种基于云边端协作的架空线路鸟巢检测与定位算法。该算法通过云、终、边缘3端的协作,解决了云端集中...针对云端单一集中数据处理时效性低、架空线路上鸟巢检测精度不高、模型对边缘计算设备算力高消耗以及目标定位不准确的问题,提出了一种基于云边端协作的架空线路鸟巢检测与定位算法。该算法通过云、终、边缘3端的协作,解决了云端集中处理效率低的问题,并通过云边数据可视化协作解决由于角度及光线引起的图像不清晰问题。为了提高架空线路鸟巢检测的精度,该算法在YOLOv5x模型基础上进行了优化。首先,通过将主干特征提取网络中的C3模块替换为C2f模块,并在最后一层加入SE(squeeze and excitation)注意力模块,以提升模型对小目标的检测能力。其次,将激活函数替换为Mish函数,解决训练梯度饱和导致神经元停止学习的问题。为了降低模型对边缘计算设备算力的消耗,对改进后的模型进行剪枝微调以降低模型参数规模。基于此优化模型,提出了三维目标定位算法,结合GIS(geographic information system)系统对定位结果进行修正,实现了对检测目标的精准定位。实验数据显示,改进后的模型平均精度均值达到93.25%,比原YOLOv5x模型提升了3.44%,优化后的模型剪枝率达到45%。检测目标经过三维空间建模计算并通过位置修正能够定位到相应的杆塔,有效指导工作人员快速准确排除隐患。展开更多
文摘可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信号的分析频谱。针对上述问题,提出了基于准同步采样的二次加权傅里叶变换方法,所提方法将准同步采样改进后与加权傅里叶变换结合,通过对原始信号进行两次不同的加权和分步修正,实现了对谐波信号的准确测量。经实验验证,使用该方法对谐波电压测量分析,测量标准偏差可达10^(-7)量级。
文摘非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PSTimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据.
文摘针对云端单一集中数据处理时效性低、架空线路上鸟巢检测精度不高、模型对边缘计算设备算力高消耗以及目标定位不准确的问题,提出了一种基于云边端协作的架空线路鸟巢检测与定位算法。该算法通过云、终、边缘3端的协作,解决了云端集中处理效率低的问题,并通过云边数据可视化协作解决由于角度及光线引起的图像不清晰问题。为了提高架空线路鸟巢检测的精度,该算法在YOLOv5x模型基础上进行了优化。首先,通过将主干特征提取网络中的C3模块替换为C2f模块,并在最后一层加入SE(squeeze and excitation)注意力模块,以提升模型对小目标的检测能力。其次,将激活函数替换为Mish函数,解决训练梯度饱和导致神经元停止学习的问题。为了降低模型对边缘计算设备算力的消耗,对改进后的模型进行剪枝微调以降低模型参数规模。基于此优化模型,提出了三维目标定位算法,结合GIS(geographic information system)系统对定位结果进行修正,实现了对检测目标的精准定位。实验数据显示,改进后的模型平均精度均值达到93.25%,比原YOLOv5x模型提升了3.44%,优化后的模型剪枝率达到45%。检测目标经过三维空间建模计算并通过位置修正能够定位到相应的杆塔,有效指导工作人员快速准确排除隐患。