针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平...针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。展开更多
针对微电网短期负荷预测精度不够的问题,论文提出了一种基于双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)深度学习的负荷预测方法。将影响家庭和商业负荷分布形成的参数为输入变量,以微电网的家庭和商业总负荷分布为...针对微电网短期负荷预测精度不够的问题,论文提出了一种基于双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)深度学习的负荷预测方法。将影响家庭和商业负荷分布形成的参数为输入变量,以微电网的家庭和商业总负荷分布为目标,利用输入变量对Bi-STM网络进行训练,通过识别微电网的消费模式,对微电网负荷进行时预测。利用相关系数(R)、均方误差(MSE)和均方根误差(RMSE)等性能评价指标对预测结果进行分析。结果表明,Bi-LSTM方法具有较高的相关系数。展开更多
文摘依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V.
文摘针对微电网短期负荷预测精度不够的问题,论文提出了一种基于双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)深度学习的负荷预测方法。将影响家庭和商业负荷分布形成的参数为输入变量,以微电网的家庭和商业总负荷分布为目标,利用输入变量对Bi-STM网络进行训练,通过识别微电网的消费模式,对微电网负荷进行时预测。利用相关系数(R)、均方误差(MSE)和均方根误差(RMSE)等性能评价指标对预测结果进行分析。结果表明,Bi-LSTM方法具有较高的相关系数。