Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading...Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.展开更多
为了优化插电式混合动力汽车(Plug-in Hybrid Electric Vehicles,PHEV)能量管理策略,提高燃油经济性,提出基于深度强化学习的能量管理策略。通过对整车MATLAB/SimuLink建模,设计随动力电池SOC自适应奖励函数,使用NEDC和FTP-75工况进行...为了优化插电式混合动力汽车(Plug-in Hybrid Electric Vehicles,PHEV)能量管理策略,提高燃油经济性,提出基于深度强化学习的能量管理策略。通过对整车MATLAB/SimuLink建模,设计随动力电池SOC自适应奖励函数,使用NEDC和FTP-75工况进行智能体训练,在并联混动模式下,以WLTC-class3工况继续进行测试,相比于等效燃油消耗最小策略节省燃油8.63%,且实时性提高16.32倍,验证了该策略的可行性。展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00353768)the Yonsei Fellowship, funded by Lee Youn Jae. This study was funded by the KIST Institutional Program Project No. 2E31603-22-140 (K J Y). S M W acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant Nos. NRF-2021R1C1C1009410, NRF2022R1A4A3032913 and RS-2024-00411904)
文摘Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.
文摘为了优化插电式混合动力汽车(Plug-in Hybrid Electric Vehicles,PHEV)能量管理策略,提高燃油经济性,提出基于深度强化学习的能量管理策略。通过对整车MATLAB/SimuLink建模,设计随动力电池SOC自适应奖励函数,使用NEDC和FTP-75工况进行智能体训练,在并联混动模式下,以WLTC-class3工况继续进行测试,相比于等效燃油消耗最小策略节省燃油8.63%,且实时性提高16.32倍,验证了该策略的可行性。