基于氮化铝高温共烧陶瓷(High Temperature Co-fired Ceramics,HTCC)厚薄膜混合基板的结构特点和工艺流程,通过探究分析混合基板表面研磨抛光后的微观状态,文中揭示了抛光后基板表面富氮疏松层的存在及附着力下降的机理,研究和优化了氮...基于氮化铝高温共烧陶瓷(High Temperature Co-fired Ceramics,HTCC)厚薄膜混合基板的结构特点和工艺流程,通过探究分析混合基板表面研磨抛光后的微观状态,文中揭示了抛光后基板表面富氮疏松层的存在及附着力下降的机理,研究和优化了氮化铝HTCC厚薄膜混合基板制造工艺,创新性地在前处理工艺中增加离子束刻蚀处理,从而有效消除了基板表面抛光引入的疏松层和表面残留的有机物污染,为表面薄膜布线提供了良好的界面。经过优化前处理工艺的基板表面导体附着力得到大幅提升,制作出的混合基板全部通过3M610附着力胶带考核,表面导体焊接拉脱附着力超过79.43 N,有效解决了混合基板工程化应用过程出现的导体膜层脱膜问题。展开更多
文摘基于氮化铝高温共烧陶瓷(High Temperature Co-fired Ceramics,HTCC)厚薄膜混合基板的结构特点和工艺流程,通过探究分析混合基板表面研磨抛光后的微观状态,文中揭示了抛光后基板表面富氮疏松层的存在及附着力下降的机理,研究和优化了氮化铝HTCC厚薄膜混合基板制造工艺,创新性地在前处理工艺中增加离子束刻蚀处理,从而有效消除了基板表面抛光引入的疏松层和表面残留的有机物污染,为表面薄膜布线提供了良好的界面。经过优化前处理工艺的基板表面导体附着力得到大幅提升,制作出的混合基板全部通过3M610附着力胶带考核,表面导体焊接拉脱附着力超过79.43 N,有效解决了混合基板工程化应用过程出现的导体膜层脱膜问题。