In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in con...In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.展开更多
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
基金partially supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.