语音信号的频谱结构复杂性决定了其短时谱分布不能用单一的概率密度函数(Probability density function,PDF)准确描述。据此,提出了一种采用超高斯混合模型对语音信号幅度谱建模以实现语音增强的新方法。首先,采用超高斯混合模型对语音...语音信号的频谱结构复杂性决定了其短时谱分布不能用单一的概率密度函数(Probability density function,PDF)准确描述。据此,提出了一种采用超高斯混合模型对语音信号幅度谱建模以实现语音增强的新方法。首先,采用超高斯混合模型对语音信号幅度谱的先验分布进行建模,相对于传统的单一模型,该模型能更好地描述语音信号的多类特性;然后,在增强过程中自适应更新混合分量的PDF及其权重,从而克服了传统模型难以跟踪语音信号分布动态变化的缺点。仿真结果表明与传统的短时谱估计算法相比,该算法的噪声抑制性能有较大的提升,增强语音的主观感知质量也有明显改善。展开更多
文摘简要叙述了语音通信中去混响的意义.利用常规通话起始语音的习惯特点,提出了预存起始纯净语音信号,并基于维纳滤波原理,通过反卷积运算求出房间冲击响应,再通过反卷积去除语音信号混响的新方法.对语音样本的仿真试验表明,该方法对单字语音的去混响效果良好,在普通计算机上每字的去混响运算耗时为0.3-0.5 s.
文摘语音信号的频谱结构复杂性决定了其短时谱分布不能用单一的概率密度函数(Probability density function,PDF)准确描述。据此,提出了一种采用超高斯混合模型对语音信号幅度谱建模以实现语音增强的新方法。首先,采用超高斯混合模型对语音信号幅度谱的先验分布进行建模,相对于传统的单一模型,该模型能更好地描述语音信号的多类特性;然后,在增强过程中自适应更新混合分量的PDF及其权重,从而克服了传统模型难以跟踪语音信号分布动态变化的缺点。仿真结果表明与传统的短时谱估计算法相比,该算法的噪声抑制性能有较大的提升,增强语音的主观感知质量也有明显改善。