脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟...脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟软件Aspen Plus对降压后各项工艺参数进行模拟优化,将优化结果应用于实际生产过程。结果表明,脱丁烷塔的降压极限为350 kPa,降压后全塔温度降低约4℃,塔釜粗裂解汽油中的C_(4)摩尔分数降低0.32百分点,节省低压蒸汽1.3 t h,装置能耗和C_(4)产品损失降低,循环水侧压降、循环水在换热器内的流速和对数传热温差均在合理范围之内。展开更多
To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid en...To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.展开更多
文摘脱丁烷塔聚合物结垢问题是制约乙烯装置长周期运行的主要因素之一。目前新建装置通过降低操作压力在防止脱丁烷塔聚合物结垢方面取得了显著效果。以脱丁烷塔为例,对降压过程的可行性、经济性以及风险点进行分析和总结,利用化工流程模拟软件Aspen Plus对降压后各项工艺参数进行模拟优化,将优化结果应用于实际生产过程。结果表明,脱丁烷塔的降压极限为350 kPa,降压后全塔温度降低约4℃,塔釜粗裂解汽油中的C_(4)摩尔分数降低0.32百分点,节省低压蒸汽1.3 t h,装置能耗和C_(4)产品损失降低,循环水侧压降、循环水在换热器内的流速和对数传热温差均在合理范围之内。
基金the financial support from National Natural Science Foundation of China(21838006,21776159)National Key Research and Development Program of China(2018YFC1902101)。
文摘To produce paraffin from hydrogenation/deoxygenation of palmitic acid,model compound of bio-oil obtained by hydrothermal liquefaction(HTL)of microalgae has been an attractive focus in recent years.In order to avoid energy-intensive separation process of water and bio-oil,it is of importance that deoxygenation upgrading of fatty acids under hydrothermal conditions similar to HTL process.Herein,it is the first time to explore the application of activated carbon(AC)-supported non-noble-metal catalysts,such as Ni,Co,and Mo,and so on,in the hydrothermal hydrogenation/deoxygenation of long-chain fatty acids,and the obtained Ni/AC-H(the Ni/AC was further H_(2)pre-reduced)is one of the best catalysts.In addition,it is found that the catalytic activity can be further improved by H_(2)pre-reduction of catalyst.Characterization results that are more low valences of nickel and oxygen vacancy can be obtained after H_(2)pre-reduction,thus significant promoting the deoxygenation especially the decarbonylation pathway of fatty acids.The total alkanes yield can reaches 95.9%at optimal conditions(280℃,360 min).This work confirmed that the low-priced AC-supported non-noble-metal catalysts have great potential compared with the noble-metal catalyst,in hydrothermal upgrading of bio-oil.