Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coal...Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.展开更多
针对煤炭地下气化(UCG)技术制备的合成气具有温度高(>200℃)、压力大(3.35 MPa)、饱和含水量大及组分复杂(含CH_(4)、H_(2)、CO_(2)和CO等)的特点,设计并采用膜分离+溶剂吸收耦合的处理方法以实现地下煤合成气中CO_(2)的脱除和H_(2)...针对煤炭地下气化(UCG)技术制备的合成气具有温度高(>200℃)、压力大(3.35 MPa)、饱和含水量大及组分复杂(含CH_(4)、H_(2)、CO_(2)和CO等)的特点,设计并采用膜分离+溶剂吸收耦合的处理方法以实现地下煤合成气中CO_(2)的脱除和H_(2)的提纯。地下煤合成气经过二级膜分离单元的处理,实现了CO_(2)/H_(2)与CH_(4)的分离并得到了脱碳净化气,其中CO_(2)含量(物质的量分数)≤3%,该膜分离工艺所需能耗为0.297 k W·h/m^(3)。使用醇胺吸收法处理CO_(2)/H_(2)混合气,并通过配方溶液筛选、工艺流程优化和校验分析等方法开展了研究,最终得到了H_(2)纯度(物质的量分数)≥99%的产品,该醇胺吸收法的能耗为0.341 k W·h/m^(3)。使用膜分离+溶剂吸收耦合处理复杂工况的地下煤合成气,可得到脱碳净化气、纯CO_(2)和工业级H_(2),提高了项目的经济价值,具有较大的应用潜力。展开更多
基金Shandong Province Natural Science Foundation,China(ZR2020KB014,ZR2022QB206)the National Natural Science Foundation of China(22178001)+1 种基金Anhui Provincial Natural Science Foundation(2308085Y19)Research Project for Outstanding Youth of Department of Education of Anhui Province(2022AH030045).
文摘Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.
文摘针对煤炭地下气化(UCG)技术制备的合成气具有温度高(>200℃)、压力大(3.35 MPa)、饱和含水量大及组分复杂(含CH_(4)、H_(2)、CO_(2)和CO等)的特点,设计并采用膜分离+溶剂吸收耦合的处理方法以实现地下煤合成气中CO_(2)的脱除和H_(2)的提纯。地下煤合成气经过二级膜分离单元的处理,实现了CO_(2)/H_(2)与CH_(4)的分离并得到了脱碳净化气,其中CO_(2)含量(物质的量分数)≤3%,该膜分离工艺所需能耗为0.297 k W·h/m^(3)。使用醇胺吸收法处理CO_(2)/H_(2)混合气,并通过配方溶液筛选、工艺流程优化和校验分析等方法开展了研究,最终得到了H_(2)纯度(物质的量分数)≥99%的产品,该醇胺吸收法的能耗为0.341 k W·h/m^(3)。使用膜分离+溶剂吸收耦合处理复杂工况的地下煤合成气,可得到脱碳净化气、纯CO_(2)和工业级H_(2),提高了项目的经济价值,具有较大的应用潜力。