This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi...This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.展开更多
This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration o...This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.展开更多
Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process...Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process system"based on IPD(Integrated product development)in the organization.The development stage,process,activity and task are the logical framework elements of the system construction."Based on process decomposition,vertical stratification,horizontal segmentation,combination of special and common,process customized to tools,role and process integration,giving full consideration to the interface between supplier management and process modules"etc.are the concrete ideas.Moreover,formulate top⁃level system construction standards,implemented by process system management tool platform,so that the process system and development work can be effectively integrated to effectively guide the development work of airborne system suppliers,and meet the quality and airworthiness requirements of civil aircraft development.Through the development application of a certain type of flight control system,the process system and tool platform were verified and optimized in practice.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers...Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.展开更多
Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and la...Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.展开更多
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di...This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.展开更多
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe...Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.展开更多
Dear Editor,This letter deals with the tracking problem of quadrotors subject to external disturbances and visibility constraints by designing a robust model predictive control(RMPC) scheme. According to the imagebase...Dear Editor,This letter deals with the tracking problem of quadrotors subject to external disturbances and visibility constraints by designing a robust model predictive control(RMPC) scheme. According to the imagebased visual servoing(IBVS) method, a virtual camera is constructed to express image moments of the tracking target.展开更多
为提高蒙皮损伤检测的自动化程度,提出一种基于改进YOLOv7通道冗余的机器视觉检测方法。首先针对飞机蒙皮损伤数据集背景单一的特点,提出增强型颈部特征融合改进算法,提高了飞机蒙皮损伤的识别精度和检测速度;其次针对主干特征提取网络...为提高蒙皮损伤检测的自动化程度,提出一种基于改进YOLOv7通道冗余的机器视觉检测方法。首先针对飞机蒙皮损伤数据集背景单一的特点,提出增强型颈部特征融合改进算法,提高了飞机蒙皮损伤的识别精度和检测速度;其次针对主干特征提取网络的卷积通道冗余的问题,引入部分卷积PConv(Partial convolution),提出主干特征提取网络轻量化,减少模型的参数量,同时提高损伤的识别效率。试验部分首先在飞机蒙皮损伤数据集上探索了不同增强型颈部特征融合改进算法,确定了最优的改进方案;接着在飞机蒙皮损伤数据集上做消融和对比试验,改进算法与原YOLOv7算法比较,mAP(Mean average precision)提升了2.3%,FPS(Frames per second)提升了22.1 f/s,模型参数量降低了34.13%;最后将改进的YOLOv7模型与主流目标检测模型对比,证明了改进算法的先进性。展开更多
Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power...UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.展开更多
The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader th...The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312,61922037,61873115,and 61803348in part by the National Major Scientific Instruments Development Project under Grant 61927807+6 种基金in part by the State Key Laboratory of Deep Buried Target Damage under Grant No.DXMBJJ2019-02in part by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant 2020L0266in part by the Shanxi Province Science Foundation for Youths under Grant No.201701D221123in part by the Youth Academic North University of China under Grant No.QX201803in part by the Program for the Innovative Talents of Higher Education Institutions of Shanxiin part by the Shanxi“1331Project”Key Subjects Construction under Grant 1331KSCin part by the Supported by Shanxi Province Science Foundation for Excellent Youths。
文摘This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.
文摘This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.
文摘Based on the analysis of the development process system status of domestic and foreign civil aircraft airborne system suppliers,this paper proposes the overall construction idea of"a set of civil aircraft process system"based on IPD(Integrated product development)in the organization.The development stage,process,activity and task are the logical framework elements of the system construction."Based on process decomposition,vertical stratification,horizontal segmentation,combination of special and common,process customized to tools,role and process integration,giving full consideration to the interface between supplier management and process modules"etc.are the concrete ideas.Moreover,formulate top⁃level system construction standards,implemented by process system management tool platform,so that the process system and development work can be effectively integrated to effectively guide the development work of airborne system suppliers,and meet the quality and airworthiness requirements of civil aircraft development.Through the development application of a certain type of flight control system,the process system and tool platform were verified and optimized in practice.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
基金supported in part by NSFC (62102099, U22A2054, 62101594)in part by the Pearl River Talent Recruitment Program (2021QN02S643)+9 种基金Guangzhou Basic Research Program (2023A04J1699)in part by the National Research Foundation, SingaporeInfocomm Media Development Authority under its Future Communications Research Development ProgrammeDSO National Laboratories under the AI Singapore Programme under AISG Award No AISG2-RP-2020-019Energy Research Test-Bed and Industry Partnership Funding Initiative, Energy Grid (EG) 2.0 programmeDesCartes and the Campus for Research Excellence and Technological Enterprise (CREATE) programmeMOE Tier 1 under Grant RG87/22in part by the Singapore University of Technology and Design (SUTD) (SRG-ISTD-2021- 165)in part by the SUTD-ZJU IDEA Grant SUTD-ZJU (VP) 202102in part by the Ministry of Education, Singapore, through its SUTD Kickstarter Initiative (SKI 20210204)。
文摘Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.
文摘Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.
基金supported by National Natural Science Foundation of China (Grant Nos.52072309 and 62303379)Beijing Institute of Spacecraft System Engineering Research Project (Grant NO.JSZL2020203B004)+1 种基金Natural Science Foundation of Shaanxi Province,Chinese (Grant NOs.2023-JC-QN-0003 and 2023-JC-QN-0665)Industry-University-Research Innovation Fund of Ministry of Education for Chinese Universities (Grant NO.2022IT189)。
文摘This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.
基金partly supported by Program for the National Natural Science Foundation of China (62373052, U1913203, 61903034)Youth Talent Promotion Project of China Association for Science and TechnologyBeijing Institute of Technology Research Fund Program for Young Scholars。
文摘Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.
基金supported by the National Natural Science Foundation of China (U22B2039, 62273281)。
文摘Dear Editor,This letter deals with the tracking problem of quadrotors subject to external disturbances and visibility constraints by designing a robust model predictive control(RMPC) scheme. According to the imagebased visual servoing(IBVS) method, a virtual camera is constructed to express image moments of the tracking target.
文摘为提高蒙皮损伤检测的自动化程度,提出一种基于改进YOLOv7通道冗余的机器视觉检测方法。首先针对飞机蒙皮损伤数据集背景单一的特点,提出增强型颈部特征融合改进算法,提高了飞机蒙皮损伤的识别精度和检测速度;其次针对主干特征提取网络的卷积通道冗余的问题,引入部分卷积PConv(Partial convolution),提出主干特征提取网络轻量化,减少模型的参数量,同时提高损伤的识别效率。试验部分首先在飞机蒙皮损伤数据集上探索了不同增强型颈部特征融合改进算法,确定了最优的改进方案;接着在飞机蒙皮损伤数据集上做消融和对比试验,改进算法与原YOLOv7算法比较,mAP(Mean average precision)提升了2.3%,FPS(Frames per second)提升了22.1 f/s,模型参数量降低了34.13%;最后将改进的YOLOv7模型与主流目标检测模型对比,证明了改进算法的先进性。
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (No.62001135)the Joint funds for Regional Innovation and Development of the National Natural Science Foundation of China(No.U21A20449)the Beijing Natural Science Foundation Haidian Original Innovation Joint Fund (No.L232002)
文摘UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.
基金the FederalMinistry of Education and Research of Germany under Grant Numbers 16ES1131 and 16ES1128K.
文摘The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.