Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the hi...Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the high load turbine cascades, a linear turbine cascade test section is designed, which enables the Schlieren photography and static pressure measurement along the cascade profile can be conducted. Variable pitch is realized in the test section to achieve different Zweifel coefficients. Due to the capability limitation of the air supplier, the test section is designed to have only5 blade channels with shortened blade height to achieve high Mach number flow conditions. Numerical investigations were carried out to investigate the wall effect and its in fluences on the flow fields inside the test section. The result indicates that the shape of the connecting part of the test section has a significant influence on the flow similarity among different blade passages. With the proper design, a good repetition flow is achieved between neighbored blade passages.展开更多
文摘Performance improvement of the high-load transonic turbine is the key method of improving the thrustto-weight ratio or the power density of gas turbine engines. In order to investigate the flow behaviors inside the high load turbine cascades, a linear turbine cascade test section is designed, which enables the Schlieren photography and static pressure measurement along the cascade profile can be conducted. Variable pitch is realized in the test section to achieve different Zweifel coefficients. Due to the capability limitation of the air supplier, the test section is designed to have only5 blade channels with shortened blade height to achieve high Mach number flow conditions. Numerical investigations were carried out to investigate the wall effect and its in fluences on the flow fields inside the test section. The result indicates that the shape of the connecting part of the test section has a significant influence on the flow similarity among different blade passages. With the proper design, a good repetition flow is achieved between neighbored blade passages.