在跨介质飞行器进行水下信息交互的诸多场景中,为了进一步提高复杂多变水声环境下水声通信链路的可靠性,提出了一种基于极化码的联合多分支均衡与译码算法(Joint Multi-Branch Equalization and Decoding Algorithm based on Polarizati...在跨介质飞行器进行水下信息交互的诸多场景中,为了进一步提高复杂多变水声环境下水声通信链路的可靠性,提出了一种基于极化码的联合多分支均衡与译码算法(Joint Multi-Branch Equalization and Decoding Algorithm based on Polarization Code,JMED-PC)。与已有均衡与极化码译码间相互独立的方法不同,所提出的算法中多分支均衡与软列表(Soft SC-List,SSCL)译码模块间并非相互独立,而是构成了环路,通过不断地在两个模块间迭代交换软信息,可显著改善均衡和译码的联合性能。仿真结果验证了迭代的有效性,也表明所提算法比已有算法有更好的性能。展开更多
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it...The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.展开更多
Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag...Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.展开更多
Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous recon...Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous reconstruction of the magnetosheath and magnetopause using a few images recorded simultaneously from a few spacecraft.This work is motivated by the prospect of possibly having two or three soft X-ray imagers in space in the coming years,and that many phenomena which occur at the magnetopause boundary,such as reconnection events and pressure pulse responses,do not lend themselves as well to superposed epoch analysis.If the reconstruction is successful-which we demonstrate in this paper that it can be-this collection of imagers can be used to reconstruct the magnetosheath and magnetopause from a single image from each spacecraft,allowing for high time resolution reconstructions.In this paper we explore the reconstruction using,two,three,and four spacecraft.We show that the location of the subsolar point of the magnetopause can be determined with just two satellites,and that volume emissions of soft X-rays,and the shape of the boundary,can be reconstructed using three or more satellites.展开更多
Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing tec...Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.展开更多
针对卫星领域命名实体语料匮乏、现有算法识别性能较低的问题,提出一种考虑模糊边界的卫星领域实体标注方法,构建包含8类常见卫星领域实体的语料库,与该领域现有语料库相比粒度更细、覆盖更广,并以此为基础提出迁移学习和多网络融合的...针对卫星领域命名实体语料匮乏、现有算法识别性能较低的问题,提出一种考虑模糊边界的卫星领域实体标注方法,构建包含8类常见卫星领域实体的语料库,与该领域现有语料库相比粒度更细、覆盖更广,并以此为基础提出迁移学习和多网络融合的卫星领域实体识别算法。该算法采用预训练双向编码器对语料语义平滑迁移获得子词级别特征,采用双向长短期记忆(bi-directional long-short term memory,BiLSTM)神经网络捕捉上下文信息确定边界,以条件随机场作为解码器实现标签预测。实验结果表明:相比于BiLSTM等传统模型具有更优的识别性能,算法在8种实体上的F1值均在92%以上,微平均F1值达到96.10%。展开更多
文摘在跨介质飞行器进行水下信息交互的诸多场景中,为了进一步提高复杂多变水声环境下水声通信链路的可靠性,提出了一种基于极化码的联合多分支均衡与译码算法(Joint Multi-Branch Equalization and Decoding Algorithm based on Polarization Code,JMED-PC)。与已有均衡与极化码译码间相互独立的方法不同,所提出的算法中多分支均衡与软列表(Soft SC-List,SSCL)译码模块间并非相互独立,而是构成了环路,通过不断地在两个模块间迭代交换软信息,可显著改善均衡和译码的联合性能。仿真结果验证了迭代的有效性,也表明所提算法比已有算法有更好的性能。
基金supported by the National Key Research and Development Program of China(2023YFB3711300 and 2021YFF0500300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(2023-XZ-90 and 2023-JB-09-10)the National Key Research and Development Program of China(2021YFF0500300).
文摘The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+2 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of Chinasupported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)。
文摘Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous reconstruction of the magnetosheath and magnetopause using a few images recorded simultaneously from a few spacecraft.This work is motivated by the prospect of possibly having two or three soft X-ray imagers in space in the coming years,and that many phenomena which occur at the magnetopause boundary,such as reconnection events and pressure pulse responses,do not lend themselves as well to superposed epoch analysis.If the reconstruction is successful-which we demonstrate in this paper that it can be-this collection of imagers can be used to reconstruct the magnetosheath and magnetopause from a single image from each spacecraft,allowing for high time resolution reconstructions.In this paper we explore the reconstruction using,two,three,and four spacecraft.We show that the location of the subsolar point of the magnetopause can be determined with just two satellites,and that volume emissions of soft X-rays,and the shape of the boundary,can be reconstructed using three or more satellites.
基金supported by the National Natural Science Foundation of China(42241109)the Guoqiang Institute,Tsinghua University(2021GQG1001)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Lunar habitat construction is crucial for successful lunar exploration missions.Due to the limitations of transportation conditions,extensive global research has been conducted on lunar in situ material processing techniques in recent years.The aim of this paper is to provide a comprehensive review,precise classification,and quantitative evaluation of these approaches,focusing specifically on four main approaches:reaction solidification(RS),sintering/melting(SM),bonding solidification(BS),and confinement formation(CF).Eight key indicators have been identified for the construction of low-cost and highperformance systems to assess the feasibility of these methods:in situ material ratio,curing temperature,curing time,implementation conditions,compressive strength,tensile strength,curing dimensions,and environmental adaptability.The scoring thresholds are determined by comparing the construction requirements with the actual capabilities.Among the evaluated methods,regolith bagging has emerged as a promising option due to its high in situ material ratio,low time requirement,lack of hightemperature requirements,and minimal shortcomings,with only the compressive strength falling below the neutral score.The compressive strength still maintains a value of 2–3 MPa.The proposed construction scheme utilizing regolith bags offers numerous advantages,including rapid and large-scale construction,ensured tensile strength,and reduced reliance on equipment and energy.In this study,guidelines for evaluating regolith solidification techniques are provided,and directions for improvement are offered.The proposed lunar habitat design based on regolith bags is a practical reference for future research.
文摘针对卫星领域命名实体语料匮乏、现有算法识别性能较低的问题,提出一种考虑模糊边界的卫星领域实体标注方法,构建包含8类常见卫星领域实体的语料库,与该领域现有语料库相比粒度更细、覆盖更广,并以此为基础提出迁移学习和多网络融合的卫星领域实体识别算法。该算法采用预训练双向编码器对语料语义平滑迁移获得子词级别特征,采用双向长短期记忆(bi-directional long-short term memory,BiLSTM)神经网络捕捉上下文信息确定边界,以条件随机场作为解码器实现标签预测。实验结果表明:相比于BiLSTM等传统模型具有更优的识别性能,算法在8种实体上的F1值均在92%以上,微平均F1值达到96.10%。