当前对于火星进入、下降与着陆过程(entry,descent and landing,EDL)气动环境认知不足,任务风险高。在EDL系统上搭载传感仪器进行飞行数据测量,重建火星大气和气动热环境,并开展充分全面的地面验证是验证科学设计工具和降低未来火星EDL...当前对于火星进入、下降与着陆过程(entry,descent and landing,EDL)气动环境认知不足,任务风险高。在EDL系统上搭载传感仪器进行飞行数据测量,重建火星大气和气动热环境,并开展充分全面的地面验证是验证科学设计工具和降低未来火星EDL任务风险的有效途径,对任务成功与否至关重要。本文首先回顾了人类火星探测任务的发展历程,明确设置热防护传感系统的必要性;然后系统总结了美国两次火星着陆任务MSL、Mars 2020,欧洲ExoMars2016任务和中国天问一号任务所搭载的EDL热防护传感系统的体系构成,以及为满足任务要求,如何进行仪器选择与布局;归纳了4次任务飞行数据的重建方法、关键技术和结果结论;最后给出了EDL热防护传感系统总结的经验、面临的技术难题和未来发展建议。展开更多
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di...The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.展开更多
文摘当前对于火星进入、下降与着陆过程(entry,descent and landing,EDL)气动环境认知不足,任务风险高。在EDL系统上搭载传感仪器进行飞行数据测量,重建火星大气和气动热环境,并开展充分全面的地面验证是验证科学设计工具和降低未来火星EDL任务风险的有效途径,对任务成功与否至关重要。本文首先回顾了人类火星探测任务的发展历程,明确设置热防护传感系统的必要性;然后系统总结了美国两次火星着陆任务MSL、Mars 2020,欧洲ExoMars2016任务和中国天问一号任务所搭载的EDL热防护传感系统的体系构成,以及为满足任务要求,如何进行仪器选择与布局;归纳了4次任务飞行数据的重建方法、关键技术和结果结论;最后给出了EDL热防护传感系统总结的经验、面临的技术难题和未来发展建议。
基金the National Natural Science Foundation of China(Grant Nos.42188101,42025404,41974186,42174188,and 42204160)the National Key R&D Program of China(Grant No.2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Fundamental Research Funds for the Central Universities(Grant Nos.2042022kf1016 and 2042023kf1025)the China Postdoctoral Science Foundation(Grant No.2022M722447)。
文摘The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.