期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
(3+1)维广义非线性发展方程的双线性Backlund变换与精确解
1
作者 薛宇英 套格图桑 《内蒙古师范大学学报(自然科学版)》 CAS 2024年第2期173-182,共10页
基于Hirota双线性方法和试探函数法,研究一个(3+1)维广义非线性发展方程的双线性Backlund变换和精确解问题。用Hirota双线性法,构造(3+1)维广义非线性发展方程的双线性形式和双线性Backlund变换。基于双线性形式和双线性Backlund变换,... 基于Hirota双线性方法和试探函数法,研究一个(3+1)维广义非线性发展方程的双线性Backlund变换和精确解问题。用Hirota双线性法,构造(3+1)维广义非线性发展方程的双线性形式和双线性Backlund变换。基于双线性形式和双线性Backlund变换,利用试探函数法与符号计算系统Mathematica,获得(3+1)维广义非线性发展方程的多种精确解,包括呼吸波解、复合型解、Lump周期解和孤子解,并分析解的相互作用情况。 展开更多
关键词 (3+1)广义非线性发展方程 HIROTA双线性方法 BACKLUND变换 试探函数法 精确解
下载PDF
一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔(英文)
2
作者 何斌 赵立通 +1 位作者 李静 田征 《上海师范大学学报(自然科学版)》 2018年第3期305-314,共10页
应用动力系统分岔理论研究一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔,根据分岔参数的不同值得到非线性变换系统的相图.通过计算得到(3+1)维非线性Jaulent-Miodek分层发展方程的精确行波解,包括周期波解、孤立波解、扭... 应用动力系统分岔理论研究一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔,根据分岔参数的不同值得到非线性变换系统的相图.通过计算得到(3+1)维非线性Jaulent-Miodek分层发展方程的精确行波解,包括周期波解、孤立波解、扭波解及反扭波解. 展开更多
关键词 (3+1)非线性发展方程 分岔 行波解 精确解
下载PDF
(3+1)维非线性发展方程的显式解
3
作者 于兴江 《聊城大学学报(自然科学版)》 2013年第3期13-16,共4页
本文利用推广的(W/G)展开法,研究(3+1)维非线性发展方程,并得到了很多该方程新的显式解,包括单循环孤立子解、三角周期解、有理函数解等.
关键词 (3+1)非线性发展方程 广义(W G)展开法 齐次平衡法 显式解
下载PDF
一个(3+1)维非线性发展方程的Bcklund变换和解
4
作者 郭婷婷 《太原师范学院学报(自然科学版)》 2016年第4期1-3,共3页
通过运用多维二元Bell多项式,文中给出(3+1)维非线性发展方程的双线性Bcklund变换,这样可以避免Hirota双线性方法中恒等式的选取.除此之外,文中还构造出该非线性方程的N-波解.
关键词 双Bell多项式 (3+1)非线性发展方程 线性表示 Bcklund变换
下载PDF
广义变系数(3+1)-维非线性薛定谔方程的有限对称群解(英文) 被引量:2
5
作者 郝鑫星 李彪 《量子电子学报》 CAS CSCD 北大核心 2016年第3期263-278,共16页
基于推广的对称群方法和符号计算,一些变系数非线性薛定谔方程的有限对称群解得到了研究.在推广对称群的基础上,对超定方程组分3种情况讨论,构造6种对称变换,并推导出标准的(3+1)-维非线性薛定谔方程和(3+1)-维变系数非线性薛定谔方程... 基于推广的对称群方法和符号计算,一些变系数非线性薛定谔方程的有限对称群解得到了研究.在推广对称群的基础上,对超定方程组分3种情况讨论,构造6种对称变换,并推导出标准的(3+1)-维非线性薛定谔方程和(3+1)-维变系数非线性薛定谔方程之间的关系.利用对称变换,从标准的(3+1)-维非线性薛定谔方程解中得到了(3+1)-维变系数非线性薛定谔方程丰富的精确解。 展开更多
关键词 非线性方程 (3+1)-非线性薛定谔方程 对称方法 精确解 符号计算
下载PDF
(2+1)维非线性发展方程的对称约化和显式解 被引量:19
6
作者 张颖元 刘希强 王岗伟 《量子电子学报》 CAS CSCD 北大核心 2012年第4期411-416,共6页
利用相容方法,得到了(2+1)维非线性发展方程的对称,并根据相应的特征方程组得到了(2+1)维非线性发展方程的相似约化,同时得到了一些新的显式解。
关键词 (2+1)非线性发展方程 对称约化 显式解
下载PDF
一个3+1维非线性发展方程和Maccari系统的对称群及精确解(英文)
7
作者 胡晓 《宁波大学学报(理工版)》 CAS 2011年第1期108-114,共7页
利用广义对称群方法和符号计算,首先得到了一个3+1维非线性发展方程和Maccari系统的李群以及非李对称变换群,然后利用它们求出的对称群以及一些简单的种子解构造出新解.
关键词 对称群 3+1非线性发展方程 Maccari系统
下载PDF
应用Riccati-Bernoulli辅助方程求解广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程 被引量:7
8
作者 石兰芳 王明灿 钱正雅 《应用数学和力学》 CSCD 北大核心 2020年第7期786-795,共10页
研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学... 研究了Riccati-Bernoulli辅助方程法,并应用这种方法得到广义非线性Schrodinger方程和(2+1)维非线性Ginzburg-Landau方程的精确行波解.这些解包括有理函数、三角函数、双曲函数和指数函数.应用这种方法求解过程简洁有效.该研究对于数学物理方程领域诸多非线性偏微分方程精确解的探究具有重要的意义. 展开更多
关键词 Riccati-Bernoulli辅助方程 广义非线性Schrodinger方程 (2+1)非线性Ginzburg-Landau方程 行波解
下载PDF
(3+1)维非线性方程新的精确解 被引量:7
9
作者 郭冠平 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第2期159-163,共5页
研究了 (3+1)维非线性方程新的精确解 .根据Painlev啨奇异分析或齐次平衡方法可得到一个非线性变换 ,能使复杂的 (3+1)维非线性方程转化为简单的线性偏微分方程和双线性偏微分方程 ,然后通过设定形式解 ,从而得到 (3+1)
关键词 齐次平衡法 (3+1)非线性方程 精确解 Painleve奇异分析 多孤子解 非线性数学物理方程
下载PDF
(3+1)维非线性方程的多孤子解 被引量:3
10
作者 郭冠平 《云南师范大学学报(自然科学版)》 2003年第1期1-4,共4页
研究了 (3 + 1 )维非线性方程的多孤子解。根据 Painlevé奇异分析或齐次平衡法可得到一个非线性变换 ,能使复杂的 (3 + 1 )维非线性方程转化为简单的线性偏微分方程和双线性偏微分方程 ,然后通过设定拟解 ,便构造出 (3 + 1 )
关键词 (3+1)非线性方程 多孤子解 齐次平衡法 非线性变换 偏微分方程
下载PDF
一个(3+1)维非线性演化方程的周期波解 被引量:2
11
作者 郭婷婷 《中北大学学报(自然科学版)》 CAS 2018年第1期25-31,共7页
基于一般的多维黎曼theta函数,直接推广双线性方法来构造(3+1)维非线性演化方程的黎曼theta函数周期波解.在多周期波解中,1-周期波的水平形态是一维的,2-周期波在独立的两个水平方向上有两个独立周期,因而它是1-周期波解的直接推广,并... 基于一般的多维黎曼theta函数,直接推广双线性方法来构造(3+1)维非线性演化方程的黎曼theta函数周期波解.在多周期波解中,1-周期波的水平形态是一维的,2-周期波在独立的两个水平方向上有两个独立周期,因而它是1-周期波解的直接推广,并且其水平形态是二维的.在非线性方程双线性表示的基础上,运用双线性方法,构造出该(3+1)维非线性偏微分方程的1-孤子解和2-孤子解.这两种解之间的关系可以用极限的方法来描述,并相应地分析了多周期波解的渐近性态,得出在小振幅限制的极限情况下,周期波解将趋近于孤子解. 展开更多
关键词 (3+1)非线性演化方程 周期波解 孤子解 渐近性态 黎曼theta函数
下载PDF
一个(3+1)维非线性偏微分方程的有限对称变换群和精确解
12
作者 王美丽 李彪 《宁波大学学报(理工版)》 CAS 2015年第4期96-99,共4页
基于符号计算与对称群直接法研究了一个(3+1)维非线性偏微分方程3wxz-(2wt-2wwx+wxxx)y+2(wxx-1wy)x=0的对称群与精确解,获得该方程的李点对称群和非李对称群.最后通过广义射影Riccati展开法研究方程的精确解,并由获得的有限对称变换... 基于符号计算与对称群直接法研究了一个(3+1)维非线性偏微分方程3wxz-(2wt-2wwx+wxxx)y+2(wxx-1wy)x=0的对称群与精确解,获得该方程的李点对称群和非李对称群.最后通过广义射影Riccati展开法研究方程的精确解,并由获得的有限对称变换群构造了相应新的一般解. 展开更多
关键词 对称群 精确解 符号计算 (3+1)NEE方程 广义射影Riccati展开法
下载PDF
首次积分法求变系数(3+1)维非线性薛定谔方程的精确解
13
作者 欧阳坦 肖冰 《新疆师范大学学报(自然科学版)》 2022年第1期16-21,共6页
文章运用首次积分方法求解一个变系数的(3+1)维非线性薛定谔方程的精确解,以前常用的方法为达朗贝尔解的结构理论,即先求其对应齐次方程的通解,再求非齐次方程的一个特解,但此方法在解非线性问题中难度较大。首次积分方法是冯兆生在求... 文章运用首次积分方法求解一个变系数的(3+1)维非线性薛定谔方程的精确解,以前常用的方法为达朗贝尔解的结构理论,即先求其对应齐次方程的通解,再求非齐次方程的一个特解,但此方法在解非线性问题中难度较大。首次积分方法是冯兆生在求解非线性偏微分方程时提出的有效积分方法,该方法应用交换代数的理论,通过引入行波变换,将非线性偏微分方程转换成常微分方程,再根据多项式除法定理,得到非线性偏微分方程的精确解。 展开更多
关键词 首次积分法 (3+1)非线性薛定谔方程 偏微分方程
下载PDF
(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统中的明暗光孤子解
14
作者 诸泫达 《应用数学进展》 2023年第7期3153-3164,共12页
研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出... 研究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统。运用待定系数的相关方法,探究(2 + 1)维非线性Ginzburg-Landau方程和广义Zakharov系统的明暗孤子解。最终获得了奇异波解和周期解等不同类型的精确解,并用Mathematica画出了相关的解的图像,并且本文所获得的孤子解是全新的。 展开更多
关键词 (2 + 1)非线性Ginzburg-Landau方程 广义Zakharov系统 孤子解 待定系数法
下载PDF
一个3+1维广义KP方程的Painlevé性质 被引量:1
15
作者 申亚丽 郑重武 《运城学院学报》 2017年第3期6-9,共4页
Painlevé测试是检验非线性方程可积性质的一个非常有效的方法,通过该测试可以验证非线性方程是否具有Painlevé可积性,同时在验证过程中通过截断可以得到非线性方程的解。本文研究了一个3+1维广义KP方程的Painlevé性质,通... Painlevé测试是检验非线性方程可积性质的一个非常有效的方法,通过该测试可以验证非线性方程是否具有Painlevé可积性,同时在验证过程中通过截断可以得到非线性方程的解。本文研究了一个3+1维广义KP方程的Painlevé性质,通过WTC检验方法,得出该方程具有Painlevé性质,最后通过截断法给出该方程的一种解。 展开更多
关键词 3+1广义KP方程 WTC方法 Painlevé性质
下载PDF
广义(3+1)维KP方程的精确有理解
16
作者 胡英武 《金华职业技术学院学报》 2023年第6期70-73,共4页
利用Hirota方法及Maple,得到了一类带9个二阶导数项的(3+1)维KP方程的精确有理解。在一定条件下,方程有lump型解,解中有八个自由参数,在特定参数下,通过定量与作图分析给出了解的数值模拟。
关键词 广义(3+1)KP方程 HIROTA方法 有理解 lump型解
下载PDF
(2+1)维变系数非线性KP方程新推广解
17
作者 靳玲花 白慧 李珊珊 《长春工程学院学报(自然科学版)》 2022年第4期125-128,共4页
为适应非线性发展方程包括变系数非线性发展方程求解的需要,试图探求辅助方程多样化和解的形式的一般化,对王明亮教授提出的(G′/G)-展开法进行了更有意义的推广。为验证此推广的可靠性与有效性,将它再次应用到(2+1)维广义圆柱变系数KP... 为适应非线性发展方程包括变系数非线性发展方程求解的需要,试图探求辅助方程多样化和解的形式的一般化,对王明亮教授提出的(G′/G)-展开法进行了更有意义的推广。为验证此推广的可靠性与有效性,将它再次应用到(2+1)维广义圆柱变系数KP方程中以期寻求内涵更为丰富的精确解,最终取得了成功。说明此推广具有可靠性和安全性。 展开更多
关键词 发展方程 精确解 推广的(G′/G)-展开法 (2+1)广义圆柱KP方程
下载PDF
广义(3+1)维立方Schrdinger方程新的精确解 被引量:3
18
作者 熊莉 张健 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期36-38,共3页
运用sine-cosine法,研究广义的(3+1)维立方Schrdinger方程新的精确解,得到不同的孤波解和周期解共6组解.
关键词 广义(3+1)立方Schrdinger方程 sine-cosine法 孤波解 周期解
下载PDF
(3+1)维非线性Burgers系统新的局域激发结构
19
作者 黄磊 《科技信息》 2010年第16期I0099-I0099,I0101,共2页
在(3+1)维非线性Burgers系统分离变量解的基础上,借助于数学软件Mathematica进行数值模拟,得到了系统的新的丰富的局域激发结构。结果表明,应用扩展的Riccati方程映射法得到的高维非线性系统的解具有丰富的局域激发结构。
关键词 (3+1)非线性Burgers方程 局域激发结构 MATHEMATICA
下载PDF
广义(3+1)维浅水波方程的Painlevé可积与新的复合解 被引量:1
20
作者 樊露露 套格图桑 《内蒙古师范大学学报(自然科学版)》 CAS 2022年第3期325-330,共6页
广义(3+1)维浅水波方程是数学与物理学中重要方程之一。首先,利用Painlevé分析法证明了广义(3+1)维浅水波方程在Painlevé意义下的可积性;其次,根据截断的Painlevé展开式得到了广义(3+1)维浅水波方程与线性方程之间的B... 广义(3+1)维浅水波方程是数学与物理学中重要方程之一。首先,利用Painlevé分析法证明了广义(3+1)维浅水波方程在Painlevé意义下的可积性;其次,根据截断的Painlevé展开式得到了广义(3+1)维浅水波方程与线性方程之间的Bäcklund变换;最后,通过Hirota双线性方法,得到了广义(3+1)维浅水波方程新的复合解。 展开更多
关键词 广义(3+1)浅水波方程 Painlevé可积 HIROTA方法 复合解
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部