Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe...Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.展开更多
A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and at...A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.展开更多
Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents in...Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents include opti-mal path points generation,path smoothing and cooperative rendezvous.In the path points generation part,the path points availability testing algorithm and the path segments availability testing algorithm are designed,on this foundation,the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path.In the path smoothing part,taking ter-minal attack angle constraint and maneuverability constraint into consideration,the Dubins curve is introduced to smooth the path segments.In cooperative rendezvous part,we take esti-mated time of arrival requirement constraint and flight speed range constraint into consideration,the speed control strategy and flight path control strategy are introduced,further,the decoupling scheme of the circling maneuver and detouring maneuver is designed,in this case,the maneuver ways,maneu-ver point,maneuver times,maneuver path and flight speed are determined.Finally,the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles(UAVs)is effectively real-ized,in this way,the combat situation suppression against the enemy can be realized in SEAD scenarios.展开更多
This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro...This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.展开更多
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est...This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.展开更多
In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this pap...In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multipl...The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.展开更多
In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has ...In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes,also known as Flying Ad Hoc Networks(FANETs).However,in FANETs,the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology,making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network(SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture,we apply an Extended Kalman Filter(EKF)for accurate mobility estimation and prediction of UAVs.In particular,we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard,we further propose a Directional Particle Swarming Optimization(DPSO)approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput,packet delivery ratio,and delay.展开更多
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im...Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.展开更多
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results...This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.展开更多
Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for mode...Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.展开更多
The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly f...The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.展开更多
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co...To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.展开更多
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ...The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.展开更多
基金partly supported by Program for the National Natural Science Foundation of China (62373052, U1913203, 61903034)Youth Talent Promotion Project of China Association for Science and TechnologyBeijing Institute of Technology Research Fund Program for Young Scholars。
文摘Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner.
基金partially sponsored by the Fundamental Research Funds for the Central Universities(No.3102015ZY092)
文摘A coalition formation algorithm is presented with limited communication ranges and delays in unknown environment,for the performance of multiple heterogeneous unmanned aerial vehicles(UAVs)in cooperative search and attack missions.The mathematic model of coalition formation is built on basis of the minimum attacking time and the minimum coalition size with satisfying resources and simultaneous strikes requirements.A communication protocol based on maximum number of hops is developed to determine the potential coalition members in dynamic network.A multistage sub-optimal coalition formation algorithm(MSOCFA)with polynomial time is established.The performances of MSOCFA and particle swarm optimization(PSO)algorithms are compared in terms of complexity,mission performance and computational time.A complex scenario is deployed to illustrate how the coalitions are formed and validate the feasibility of the MSOCFA.The effect of communication constraints(hop delay and max-hops)on mission performance is studied.The results show that it is beneficial to determine potential coalition members in a wide and deep range over the network in the presence of less delay.However,when the delays are significant,it is more advantageous to determine coalitions from among the immediate neighbors.
文摘Aiming at the suppression of enemy air defense(SEAD)task under the complex and complicated combat sce-nario,the spatiotemporal cooperative path planning methods are studied in this paper.The major research contents include opti-mal path points generation,path smoothing and cooperative rendezvous.In the path points generation part,the path points availability testing algorithm and the path segments availability testing algorithm are designed,on this foundation,the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path.In the path smoothing part,taking ter-minal attack angle constraint and maneuverability constraint into consideration,the Dubins curve is introduced to smooth the path segments.In cooperative rendezvous part,we take esti-mated time of arrival requirement constraint and flight speed range constraint into consideration,the speed control strategy and flight path control strategy are introduced,further,the decoupling scheme of the circling maneuver and detouring maneuver is designed,in this case,the maneuver ways,maneu-ver point,maneuver times,maneuver path and flight speed are determined.Finally,the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles(UAVs)is effectively real-ized,in this way,the combat situation suppression against the enemy can be realized in SEAD scenarios.
基金support from the National Natural Science Foundation of China(No.61773395)。
文摘This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance.
文摘This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.
基金supported by the China Postdoctoral Science Foundation (Grant No.2021M700321)the Fundamental Research Funds for the Central Universities (Grant No.YWF-23-Q1041)。
文摘In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
基金supported by the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ200607)China NSF Grants(Grant No.61631020)+1 种基金Aeronautical Science Foundation of China(Grant No.2017ZC52021)Open Foundation for Graduate Innovation of NUAA(Grant No.kfjj20170405 and kfjj20180408)
文摘The wireless communication systems based on Unmanned Aerial Vehicles(UAVs) have found a wide range of applications recently. In this paper, we propose a new three-dimensional(3 D) non-stationary multiple-input multiple-output(MIMO) channel model for the communication links between the UAV and mobile terminal(MT). The new model originates the traditional geometry-based stochastic models(GBSMs) but considers the non-stationary propagation environment due to the rapid movements of the UAV, MT, and clusters. Meanwhile, the upgrade time evolving algorithms of time-variant channel parameters, i.e., the path number based on birth-death processes of clusters, path delays, path powers, and angles of arrival and departure, are developed and optimized. In addition, the statistical properties of proposed GBSM including autocorrelation function(ACF), cross-correlation function(CCF), and Doppler power spectrum density(DPSD) are investigated and analyzed. Simulation results demonstrate that our proposed model provides a good agreement on the statistical properties with the corresponding derived theoretical ones, which indicates its usefulness for the performance evaluation and validation of the UAV based communication systems.
文摘In recent years,with the growth in Unmanned Aerial Vehicles(UAVs),UAV-based systems have become popular in both military and civil applications.In these scenarios,the lack of reliable communication infrastructure has motivated UAVs to establish a network as flying nodes,also known as Flying Ad Hoc Networks(FANETs).However,in FANETs,the high mobility degree of flying and terrestrial users may be responsible for constant changes in the network topology,making end-to-end connections in FANETs challenging.Mobility estimation and prediction of UAVs can address the challenge mentioned above since it can provide better routing planning and improve overall FANET performance in terms of continuous service availability.We thus develop a Software Defined Network(SDN)-based heterogeneous architecture for reliable communication in FANETs.In this architecture,we apply an Extended Kalman Filter(EKF)for accurate mobility estimation and prediction of UAVs.In particular,we formulate the routing problem in SDN-based Heterogeneous FANETs as a graph decision problem.As the problem is NP-hard,we further propose a Directional Particle Swarming Optimization(DPSO)approach to solve it.The extensive simulation results demonstrate that the proposed DPSO routing can exhibit superior performance in improving the goodput,packet delivery ratio,and delay.
基金the Artificial Intelligence Key Laboratory of Sichuan Province(Nos.2019RYJ05)National Natural Science Foundation of China(Nos.61971107).
文摘Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.
基金supported in part by the National Natural Science Foundation of China(61673106)the Natural Science Foundation of Jiangsu Province(BK20171362)the Fundamental Research Funds for the Central Universities(2242019K40024)
文摘This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
基金supported in part by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”(2018AAA0102303)the Young Elite Scientists Sponsorship Program of China Association of Science and Technology(YESS20210289)+1 种基金the China Postdoctoral Science Foundation(2020TQ1057,2020M682823)the National Natural Science Foundation of China(U20B2071,U1913602,91948204)。
文摘Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.
基金This work is supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the National Key Research and Development Project of China under Grant No.2018YFB1800801+2 种基金in part by the Primary Research&Development plan of Jiangsu Province under Grant BE2021013-4in part by the National Natural Science Foundation of China under Grants No.61827801 and 61631020the China Scholarship Council(CSC)Grant 202006830072.
文摘The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.
基金supported in part by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.
基金supported by the Key Research and Development Program of Shaanxi(2022GY-089)the Natural Science Basic Research Program of Shaanxi(2022JQ-593).
文摘The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.