We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by c...We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.展开更多
In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those ...In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those changes. Especially, in case of maritime environment, as the center stage of combat has changed from ocean to coastal areas, it is difficult for the existing naval forces to effectively operate in shallow waters. Therefore, unmanned underwater vehicles (UUVs) are being required at an increasing pace. In this paper, we analyze the characteristics of already developed UUVs, which are the key unmanned system of the marine battlefield environment in the future. Through the analysis of development cases and the investigation of the essential technologies, the critical design issues of UUVs are elaborated. We also suggest the future directions of the UUV technologies based on the case analysis.展开更多
In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which c...In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.展开更多
Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on thi...Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on this basis used landscape pattern indices that showed high correlation with land use changes for the quantitative analysis and evaluation of ecosystem structure in the study area and also landscape pattern after the construction of high-speed railway.The results showed that UAV images performed well in the evaluation of railway landscape ecological environment,landscape structure and features represented by the selected landscape pattern indices in this paper were applicable,and capable of ensuring scientific evaluation of ecological environmental impact;the overall landscape pattern of the Zhenjiangnan Station section(Beijing–Shanghai High-speed Railway) after completion was moderate,and local ecosystem was damaged,thus scientific and reasonable ecological planning was required to design and change landscape structure.展开更多
文摘We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.
文摘In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those changes. Especially, in case of maritime environment, as the center stage of combat has changed from ocean to coastal areas, it is difficult for the existing naval forces to effectively operate in shallow waters. Therefore, unmanned underwater vehicles (UUVs) are being required at an increasing pace. In this paper, we analyze the characteristics of already developed UUVs, which are the key unmanned system of the marine battlefield environment in the future. Through the analysis of development cases and the investigation of the essential technologies, the critical design issues of UUVs are elaborated. We also suggest the future directions of the UUV technologies based on the case analysis.
文摘In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.
基金Sponsored by Environmental Protection Fund of China-"123 Project"of Liaoning Environmental Scientific Research&Education(CEPF2010-123-2-10)
文摘Taking Beijing–Shanghai High-speed Railway(the section of Zhenjiangnan Station) for example,this paper applied UAV remote sensing data and GIS spatial analysis to analyze current land use types in this section,on this basis used landscape pattern indices that showed high correlation with land use changes for the quantitative analysis and evaluation of ecosystem structure in the study area and also landscape pattern after the construction of high-speed railway.The results showed that UAV images performed well in the evaluation of railway landscape ecological environment,landscape structure and features represented by the selected landscape pattern indices in this paper were applicable,and capable of ensuring scientific evaluation of ecological environmental impact;the overall landscape pattern of the Zhenjiangnan Station section(Beijing–Shanghai High-speed Railway) after completion was moderate,and local ecosystem was damaged,thus scientific and reasonable ecological planning was required to design and change landscape structure.