In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity....Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.展开更多
Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applic...Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applications.This paper proposes an enhanced version of the AODV(Ad Hoc On-Demand Distance Vector)protocol capable of detecting blackholes and malfunctioning benign nodes in WSNs,thereby avoiding them when delivering packets.The proposed version employs a network-based reputation system to select the best and most secure path to a destination.To achieve this goal,the proposed version utilizes the Watchdogs/Pathrater mechanisms in AODV to gather and broadcast reputations to all network nodes to build the network-based reputation system.To minimize the network overhead of the proposed approach,the paper uses reputation aggregator nodes only for forwarding reputation tables.Moreover,to reduce the overhead of updating reputation tables,the paper proposes three mechanisms,which are the prompt broadcast,the regular broadcast,and the light broadcast approaches.The proposed enhanced version has been designed to perform effectively in dynamic environments such as mobile WSNs where nodes,including blackholes,move continuously,which is considered a challenge for other protocols.Using the proposed enhanced protocol,a node evaluates the security of different routes to a destination and can select the most secure routing path.The paper provides an algorithm that explains the proposed protocol in detail and demonstrates a case study that shows the operations of calculating and updating reputation values when nodes move across different zones.Furthermore,the paper discusses the proposed approach’s overhead analysis to prove the proposed enhancement’s correctness and applicability.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of h...Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.展开更多
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of c...In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.展开更多
Wireless sensor networks(WSNs)are the major contributors to big data acquisition.The authenticity and integrity of the data are two most important basic requirements for various services based on big data.Data aggrega...Wireless sensor networks(WSNs)are the major contributors to big data acquisition.The authenticity and integrity of the data are two most important basic requirements for various services based on big data.Data aggregation is a promising method to decrease operation cost for resource-constrained WSNs.However,the process of data acquisitions in WSNs are in open environments,data aggregation is vulnerable to more special security attacks with hiding feature and subjective fraudulence,such as coalition attack.Aimed to provide data authenticity and integrity protection for WSNs,an efficient and secure identity-based aggregate signature scheme(EIAS)is proposed in this paper.Rigorous security proof shows that our proposed scheme can be secure against all kinds of attacks.The performance comparisons shows EIAS has clear advantages in term of computation cost and communication cost when compared with similar data aggregation scheme for WSNs.展开更多
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep...Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.展开更多
Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divid...Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divide some unconnected sub-networks and shorten the lifetime of WSNs. To tackle this problem, a load-balance mechanism is proposed based on minority game (MG) with dormancy strategy. This mechanism can cause the rich behaviors of cooperation , prolong lifetime of WSNs, and keep energy consumed evenly. This dormancy mechanism can save energy of nodes by keeping in sleep temperately . Simulation results show that the proposed strategy can efficiently enhance the lifetime of cluster and the lifetime of whole WSNs.展开更多
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金supported by the Department of Electrical Engineering at the National Chin-Yi University of Technology。
文摘Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system.
文摘Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applications.This paper proposes an enhanced version of the AODV(Ad Hoc On-Demand Distance Vector)protocol capable of detecting blackholes and malfunctioning benign nodes in WSNs,thereby avoiding them when delivering packets.The proposed version employs a network-based reputation system to select the best and most secure path to a destination.To achieve this goal,the proposed version utilizes the Watchdogs/Pathrater mechanisms in AODV to gather and broadcast reputations to all network nodes to build the network-based reputation system.To minimize the network overhead of the proposed approach,the paper uses reputation aggregator nodes only for forwarding reputation tables.Moreover,to reduce the overhead of updating reputation tables,the paper proposes three mechanisms,which are the prompt broadcast,the regular broadcast,and the light broadcast approaches.The proposed enhanced version has been designed to perform effectively in dynamic environments such as mobile WSNs where nodes,including blackholes,move continuously,which is considered a challenge for other protocols.Using the proposed enhanced protocol,a node evaluates the security of different routes to a destination and can select the most secure routing path.The paper provides an algorithm that explains the proposed protocol in detail and demonstrates a case study that shows the operations of calculating and updating reputation values when nodes move across different zones.Furthermore,the paper discusses the proposed approach’s overhead analysis to prove the proposed enhancement’s correctness and applicability.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
文摘Wireless sensor networks(WSNs)are characterized by heterogeneous traffic types(audio,video,data)and diverse application traffic requirements.This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs.The requirements for each class regarding sensitivity to QoS(Quality of Service)parameters,such as loss,delay,and jitter,are described.These classes encompass real-time and delay-tolerant traffic.Given that QoS evaluation is a multi-criteria decision-making problem,we employed the AHP(Analytical Hierarchy Process)method for multi-criteria optimization.As a result of this approach,we derived weight values for different traffic classes based on key QoS factors and requirements.These weights are assigned to individual traffic classes to determine transmission priority.This study provides a thorough comparative analysis of the proposed model against existing methods,demonstrating its superior performance across various traffic scenarios and its implications for future WSN applications.The results highlight the model’s adaptability and robustness in optimizing network resources under varying conditions,offering insights into practical deployments in real-world scenarios.Additionally,the paper includes an analysis of energy consumption,underscoring the trade-offs between QoS performance and energy efficiency.This study presents the development of a differentiated services model for heterogeneous traffic in wireless sensor networks,considering the appropriate QoS framework supported by experimental analyses.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金National Natural Science Foundations of China (No.61073177,60905037)
文摘In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.
基金The work was supported in part by the National Natural Science Foundation of China(61572370)and the National Natural Science Function of Qinghai Province(2019-ZJ-7065,2017-ZJ-959Q)+1 种基金the MOE(Ministry of Education in China)Project of Humanities and Social Sciences(17YJCZH203)and the Natural Science Foundation of Hubei Province in China(2016CFB652).
文摘Wireless sensor networks(WSNs)are the major contributors to big data acquisition.The authenticity and integrity of the data are two most important basic requirements for various services based on big data.Data aggregation is a promising method to decrease operation cost for resource-constrained WSNs.However,the process of data acquisitions in WSNs are in open environments,data aggregation is vulnerable to more special security attacks with hiding feature and subjective fraudulence,such as coalition attack.Aimed to provide data authenticity and integrity protection for WSNs,an efficient and secure identity-based aggregate signature scheme(EIAS)is proposed in this paper.Rigorous security proof shows that our proposed scheme can be secure against all kinds of attacks.The performance comparisons shows EIAS has clear advantages in term of computation cost and communication cost when compared with similar data aggregation scheme for WSNs.
文摘Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.
文摘Load-balance is an important issue in wireless sensor networks (WSNs), especially in WSNs with hierarchical structure. Energy consumed unevenly will bring the production of hot spots. Hot spot will cause WSNs to divide some unconnected sub-networks and shorten the lifetime of WSNs. To tackle this problem, a load-balance mechanism is proposed based on minority game (MG) with dormancy strategy. This mechanism can cause the rich behaviors of cooperation , prolong lifetime of WSNs, and keep energy consumed evenly. This dormancy mechanism can save energy of nodes by keeping in sleep temperately . Simulation results show that the proposed strategy can efficiently enhance the lifetime of cluster and the lifetime of whole WSNs.