[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic me...[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic mechanism of alien plants invasion.[Result]Most of the invasive plants have not been explicitly defined and their effective control methods not brought forward.[Conclusion]Overrun of alien invasive plants depends on whether the niche of a species could be continuously met at spatial level.Based on this we put forward corresponding control measures,proposed an assumption to establish a cylinder-network model and discussed the definition of alien invasive plants.展开更多
This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount...This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.展开更多
Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem ...Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.展开更多
The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in rec...The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1(primary producers and detritus) to4.3(large demersal fishes). The estimated total system throughput was 12 917.10 t/(km^2·a), with 74.59% and25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5%for grazing food chain and 13.9% for detritus food chain. The system omnivory index(SOI), Finn's cycled index(FCI) and connectance index(CI) were relatively low in this area while the total primary production/total respiration(TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem.展开更多
The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) we...The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.展开更多
Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic ene...Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.展开更多
Energy flow of the macrozoobenthic community in an algal lake, Houhu Lake (Wuhan, China) was investigated from April, 1996 to March, 1997. The estimated consumption of the community was 2522.7 kJ/(m 2·a); defecat...Energy flow of the macrozoobenthic community in an algal lake, Houhu Lake (Wuhan, China) was investigated from April, 1996 to March, 1997. The estimated consumption of the community was 2522.7 kJ/(m 2·a); defecation was 2049.1 kJ/(m 2·a); metabolism 371.2 kJ/(m 2·a); excretion 34.7 kJ/(m 2·a) and production 67.7 kJ/(m 2·a). The assimilation rate of the community was 19%; and 81% of its ingestion was defecated. The computed net growth efficiency was 14%, much lower than most reported values, which meant that the macrozoobenthic community in Houhu Lake utilized food less effectively.展开更多
The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials ...The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.展开更多
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of...Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m^3 reached the maximum when the experimental flume slope is 12°.展开更多
Energy resilience is about ensuring a business and end-use consumers have a reliable,regular supply of energy and contingency measures in place in the event of a power failure,generating a source of power such as elec...Energy resilience is about ensuring a business and end-use consumers have a reliable,regular supply of energy and contingency measures in place in the event of a power failure,generating a source of power such as electricity for daily needs from an uninterrupted source of energy no matter either renewable or nonrenewable.Causes of resilience issues include power surges,weather,natural disasters,or man-made accidents,and even equipment failure.The human operational error can also be an issue for grid-power supply to go down and should be factored into resilience planning.As the energy landscape undergoes a radical transformation,from a world of large,centralized coal plants to a decentralized energy world made up of small-scale gas-fired production and renewables,the stability of electricity supply will begin to affect energy pricing.Businesses must plan for this change.The challenges that the growth of renewables brings to the grid in terms of intermittency mean that transmission and distribution costs consume an increasing proportion of bills.With progress in the technology of AI(Artificial Intelligence)integration of such progressive technology in recent decades,we are improving our resiliency of energy flow,so we prevent any unexpected interruption of this flow.Ensuring your business is energy resilient helps insulate against price increases or fluctuations in supply,becoming critical to maintaining operations and reducing commercial risk.In the form short TM(Technical Memorandum),this paper covers this issue.展开更多
A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energ...A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind.展开更多
Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and ...Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.展开更多
The energy flow of Branchiura sowerbyi was studied for the first time in China in a shallow macrophytic lake, Biandantang Lake, Hubei Province. The energy flow was calculated from the measurement of flesh production (...The energy flow of Branchiura sowerbyi was studied for the first time in China in a shallow macrophytic lake, Biandantang Lake, Hubei Province. The energy flow was calculated from the measurement of flesh production (12.5241kJ/m2a), egestion (517.7302kJ/m2a), metabolism (38.3273 kJ/m2a), and excretion (4.3798kJ/m2a). The net growth efficiency of the species is about 22.7%, which accords well with the generally reported value for oligochaetes. In addition, the relationship between starvation respiration (R, mgO2/ind穌), wet weight (Ww, mg) and temperature (T, C) were also measured, with the regression function being R=0.008 Ww0.736 e0.050T.展开更多
The energy budget of Bellamya earuginosa in a shallow algal lake, Houhu Lake (Wuhan, China) was investigated by the measurement of flesh production (32.8kJ/(m 2·a)), egestion (337.7 kJ/(m 2·a)), metabolism (...The energy budget of Bellamya earuginosa in a shallow algal lake, Houhu Lake (Wuhan, China) was investigated by the measurement of flesh production (32.8kJ/(m 2·a)), egestion (337.7 kJ/(m 2·a)), metabolism (246.7 kJ/(m 2·a)), and estimation of excretion (21.4kJ/(m 2·a)). The net growth efficiency of the species is about 10.9%, which accords with the generally reported value for gastropods. In addition, the relationships between starvation respiration ( R , mgO 2/(Ind·d)), body weight ( Wd , mg in dry wt) and temperature ( T , ℃) were also determined. The regression equation R =0.044 Wd 0.537 e 0.061T was obtained by the least square method, The measured SDA of the species is 26.51% of its gross metabolism.展开更多
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,...The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.展开更多
Chaotic phenomena are increasingly being observed in all fields of nature,where investigations reveal that a natural phe nomenon exhibits nonlinearities and attempts to reveal their deep underlying mechanisms.Chaos is...Chaotic phenomena are increasingly being observed in all fields of nature,where investigations reveal that a natural phe nomenon exhibits nonlinearities and attempts to reveal their deep underlying mechanisms.Chaos is normally understood as“a state of disorder”,for which there is as yet no universally accepted mathematical definition.A commonly used concept states that,for a dynamical system to be classified as chaotic,it must have the following properties:be sensitive to initial conditions,show topological transitivity,have densely periodical orbits etc.Revealing the rules that govern chaotic motion is thus an important unsolved task for exploring nature.W e present herein a generalised energy conservation law governing chaotic phenomena.Based on two scalar variables,viz.generalised potential and kinetic energies defined in the phase space describing nonlinear dynamical systems,we find that chaotic motion is periodic motion with infinite time period whose time-averaged generalised potential and kinetic energies are conserved over its time period.This implies that,as the averaging time is increased,the time-averaged generalised potential and kinetic energies tend to constants while the time-averaged energy flows,i.e.,their rates of change with time,tend to zero.Numerical simulations on reported chaotic motions,such as the forced van der Pol system,forced Duffing system,forced smooth and discontinuous oscillator,Lorenz’s system,and Rossler's system,show the above conclusions to be correct according to the results presented herein.This discovery may indicate that chaotic phenomena in nature could be controlled because,even though their instantaneous states are disordered,their long-time averages can be predicted.展开更多
This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the peri...This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the periodic flow processes for industrial applications. In this regard, a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity, the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well. Moreover, the concept of characteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden w...The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden warming (SSW) event of January 2009. The Western Europe high plays important roles in the propagation of the energy from North America to Eurasian. When the Western Europe high appeared and shifted eastward, energy conversions increased and energy propagated from North America to Eurasian as a form of interaction energy flow. The baroclinic conversion between transient-eddy kinetic energy (Ke) and transient-eddy available potential energy (Ae) and the horizontal advection of geopotential height were approximately one order of magnitude less than Ke and Ae generation terms. So, these terms were less important to this SSW event.展开更多
In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic ...In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.展开更多
基金Supported by Joint Research Fund from National Natural Science Foundation of China(NSFC)-Yunnan Province(U0933601)Students Research Fund from Southwest Forestry University(1001)~~
文摘[Objective]This study was to reveal the essence of mechanism about how the alien invasive plants spread.[Method]Species niche and material/energy flow were used as basic research indicators to analyze the intrinsic mechanism of alien plants invasion.[Result]Most of the invasive plants have not been explicitly defined and their effective control methods not brought forward.[Conclusion]Overrun of alien invasive plants depends on whether the niche of a species could be continuously met at spatial level.Based on this we put forward corresponding control measures,proposed an assumption to establish a cylinder-network model and discussed the definition of alien invasive plants.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAF10B05)
文摘This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.
文摘Accurate electric energy(EE)measurements and billing estimations in a power system necessitate the development of an energy flow distribution model.This paper summarizes the results of investigations on a new problem related to the determination of EE flow in a power system over time intervals ranging from minutes to years.The problem is referred to as the energy flow problem(EFP).Generally,the grid state and topology may fluctuate over time.An attempt to use instantaneous(not integral)power values obtained from telemetry to solve classical electrical engineering equations leads to significant modeling errors,particularly with topology changes.A promoted EFP model may be suitable in the presence of such topological and state changes.Herein,EE flows are determined using state estimation approaches based on direct EE measurement data in Watt-hours(Volt-ampere reactive-hours)provided by electricity meters.The EFP solution is essential for a broad set of applications,including meter data validation,zero unbalance EE billing,and nontechnical EE loss check.
基金The Public Science and Technology Research Funds Projects of Ministry of Agriculture under contract No.201303050-02the Scientific and Technological Innovation Project for the Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASKJ02+2 种基金the Fundamental Research Funds for the Central Universities under contract No.201262004the National Natural Science Foundation of China under contract No.41006083the Shandong Provincial Natural Science Foundation,China under contract No.ZR2010DQ026
文摘The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1(primary producers and detritus) to4.3(large demersal fishes). The estimated total system throughput was 12 917.10 t/(km^2·a), with 74.59% and25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5%for grazing food chain and 13.9% for detritus food chain. The system omnivory index(SOI), Finn's cycled index(FCI) and connectance index(CI) were relatively low in this area while the total primary production/total respiration(TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem.
文摘The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375446,51575494)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LR16E050001,LZ14E050001)
文摘Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.
文摘Energy flow of the macrozoobenthic community in an algal lake, Houhu Lake (Wuhan, China) was investigated from April, 1996 to March, 1997. The estimated consumption of the community was 2522.7 kJ/(m 2·a); defecation was 2049.1 kJ/(m 2·a); metabolism 371.2 kJ/(m 2·a); excretion 34.7 kJ/(m 2·a) and production 67.7 kJ/(m 2·a). The assimilation rate of the community was 19%; and 81% of its ingestion was defecated. The computed net growth efficiency was 14%, much lower than most reported values, which meant that the macrozoobenthic community in Houhu Lake utilized food less effectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60671015, 60225001 and 60621002)The State Key Development Program for Basic Research of China (Grant No 2004CB719802)the Doctorate Found of State Education Commission of China (Grant No 20040286010)
文摘The phenomena of super energy flows are studied theoretically and numerically in a parallel-plate waveguide which is filled with two layered equally-thick different media, i.e. air and specific left-handed materials (LHM) with εr1 = -1/(1 +δ) +iγ and μr1 = -(1 + δ) + iγ. In this special waveguide, two-directional super-energy flows are excited by a three-dimensional horizontal electric dipole at the same time, which has transmission patterns different from those of two-dimensional source and three-dimensional vertical electric dipole. We also show that the retardation and loss in LHM are sensitive to the amplitude of super power densities, and the dimensions of waveguide determine the propagating modes, which makes super energy flows more practical.
基金supported by the National Key Technology Research and Development Program of China (No. 2014BAL05B01)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (No. KFJ-EW-STS-094)+1 种基金the National Science Foundation of China (No. 41302283)the West Light Foundation of Chinese Academy of Sciences
文摘Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m^3 reached the maximum when the experimental flume slope is 12°.
文摘Energy resilience is about ensuring a business and end-use consumers have a reliable,regular supply of energy and contingency measures in place in the event of a power failure,generating a source of power such as electricity for daily needs from an uninterrupted source of energy no matter either renewable or nonrenewable.Causes of resilience issues include power surges,weather,natural disasters,or man-made accidents,and even equipment failure.The human operational error can also be an issue for grid-power supply to go down and should be factored into resilience planning.As the energy landscape undergoes a radical transformation,from a world of large,centralized coal plants to a decentralized energy world made up of small-scale gas-fired production and renewables,the stability of electricity supply will begin to affect energy pricing.Businesses must plan for this change.The challenges that the growth of renewables brings to the grid in terms of intermittency mean that transmission and distribution costs consume an increasing proportion of bills.With progress in the technology of AI(Artificial Intelligence)integration of such progressive technology in recent decades,we are improving our resiliency of energy flow,so we prevent any unexpected interruption of this flow.Ensuring your business is energy resilient helps insulate against price increases or fluctuations in supply,becoming critical to maintaining operations and reducing commercial risk.In the form short TM(Technical Memorandum),this paper covers this issue.
基金This work is supported by National Natural Science Foundation of China.
文摘A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind.
基金supported by the High-tech Research and Development Program of China(2014AA041802)。
文摘Ethylene cracking process is the core production process in ethylene industry,and is paid more attention to reduce high energy consumption.Because of the interdependent relationships between multi-flow allocation and multi-parameter setting in cracking process,it is difficult to find the overall energy efficiency scheduling for the purpose of saving energy.The traditional scheduling solutions with optimal economic benefit are not applicable for energy efficiency scheduling issue due to the neglecting of recycle and lost energy,as well as critical operation parameters as coil outlet pressure(COP)and dilution ratio.In addition,the scheduling solutions mostly regard each cracking furnace as an elementary unit,regardless of the coordinated operation of internal dual radiation chambers(DRC).Therefore,to improve energy utilization and production operation,a novel energy efficiency scheduling solution for ethylene cracking process is proposed in this paper.Specifically,steam heat recycle and exhaust heat loss are considered in cracking process based on 6 types of extreme learning machine(ELM)based cracking models incorporating DRC operation and three operation parameters as coil outlet temperature(COT),COP,and dilution ratio according to semi-mechanism analysis.Then to provide long-term decision-making basis for energy efficiency scheduling,overall energy efficiency indexes,including overall output per unit net energy input(OONE),output-input ratio per unit net energy input(ORNE),exhaust gas heat loss ratio(EGHL),are designed based on input-output analysis in terms of material and energy flows.Finally,a multiobjective evolutionary algorithm based on decomposition(MOEA/D)is employed to solve the formulated multi-objective mixed-integer nonlinear programming(MOMINLP)model.The validities of the proposed scheduling solution are illustrated through a case study.The scheduling results demonstrate that an optimal balance between multi-flow allocation,multi-parameter setting,and DRC coordinated operation is reached,which achieves 3.37%and 2.63%decreases in net energy input for same product output and conversion ratio,as well as the 1.56%decrease in energy loss ratio.
基金Project supported by NSFC (30270278 3960019)+1 种基金 the foundation of the government of Hubei Province (No. 2000J109) and the foundation of
文摘The energy flow of Branchiura sowerbyi was studied for the first time in China in a shallow macrophytic lake, Biandantang Lake, Hubei Province. The energy flow was calculated from the measurement of flesh production (12.5241kJ/m2a), egestion (517.7302kJ/m2a), metabolism (38.3273 kJ/m2a), and excretion (4.3798kJ/m2a). The net growth efficiency of the species is about 22.7%, which accords well with the generally reported value for oligochaetes. In addition, the relationship between starvation respiration (R, mgO2/ind穌), wet weight (Ww, mg) and temperature (T, C) were also measured, with the regression function being R=0.008 Ww0.736 e0.050T.
文摘The energy budget of Bellamya earuginosa in a shallow algal lake, Houhu Lake (Wuhan, China) was investigated by the measurement of flesh production (32.8kJ/(m 2·a)), egestion (337.7 kJ/(m 2·a)), metabolism (246.7 kJ/(m 2·a)), and estimation of excretion (21.4kJ/(m 2·a)). The net growth efficiency of the species is about 10.9%, which accords with the generally reported value for gastropods. In addition, the relationships between starvation respiration ( R , mgO 2/(Ind·d)), body weight ( Wd , mg in dry wt) and temperature ( T , ℃) were also determined. The regression equation R =0.044 Wd 0.537 e 0.061T was obtained by the least square method, The measured SDA of the species is 26.51% of its gross metabolism.
文摘The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.
文摘Chaotic phenomena are increasingly being observed in all fields of nature,where investigations reveal that a natural phe nomenon exhibits nonlinearities and attempts to reveal their deep underlying mechanisms.Chaos is normally understood as“a state of disorder”,for which there is as yet no universally accepted mathematical definition.A commonly used concept states that,for a dynamical system to be classified as chaotic,it must have the following properties:be sensitive to initial conditions,show topological transitivity,have densely periodical orbits etc.Revealing the rules that govern chaotic motion is thus an important unsolved task for exploring nature.W e present herein a generalised energy conservation law governing chaotic phenomena.Based on two scalar variables,viz.generalised potential and kinetic energies defined in the phase space describing nonlinear dynamical systems,we find that chaotic motion is periodic motion with infinite time period whose time-averaged generalised potential and kinetic energies are conserved over its time period.This implies that,as the averaging time is increased,the time-averaged generalised potential and kinetic energies tend to constants while the time-averaged energy flows,i.e.,their rates of change with time,tend to zero.Numerical simulations on reported chaotic motions,such as the forced van der Pol system,forced Duffing system,forced smooth and discontinuous oscillator,Lorenz’s system,and Rossler's system,show the above conclusions to be correct according to the results presented herein.This discovery may indicate that chaotic phenomena in nature could be controlled because,even though their instantaneous states are disordered,their long-time averages can be predicted.
基金School of Chemical Engineering, College of Engineering, University of Tehran, for the financial support
文摘This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column, which is highly required for design and optimization of the periodic flow processes for industrial applications. In this regard, a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity, the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well. Moreover, the concept of characteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40930950 and 40921160379)the National Basic Research Program of China(Grant No.2010CB428603)
文摘The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden warming (SSW) event of January 2009. The Western Europe high plays important roles in the propagation of the energy from North America to Eurasian. When the Western Europe high appeared and shifted eastward, energy conversions increased and energy propagated from North America to Eurasian as a form of interaction energy flow. The baroclinic conversion between transient-eddy kinetic energy (Ke) and transient-eddy available potential energy (Ae) and the horizontal advection of geopotential height were approximately one order of magnitude less than Ke and Ae generation terms. So, these terms were less important to this SSW event.
基金supported in part by the National Natural Science Foundation of China(No.51977005)。
文摘In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.