Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison o...Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.展开更多
Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] di...Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1± 0.7 and 6.52±0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2], N-methylPhe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by δ nor by K selective agonist. Na+ (100 mM) and GTP (50 μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR. μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTPγS binding (EC50 = 2.7nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins.展开更多
The interaction of p-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the...The interaction of p-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. ,We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of 6-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-endocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrsfrom the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.展开更多
Objective:To study the effect of μ-opioid receptor (MOR) expression in the inflammatory skin tissue and the effect of electroacupuncture (EA) on the topical immunoreaction (IR) of MOR positive fibers in adjuva...Objective:To study the effect of μ-opioid receptor (MOR) expression in the inflammatory skin tissue and the effect of electroacupuncture (EA) on the topical immunoreaction (IR) of MOR positive fibers in adjuvant arthritic (AA) rats. Methods: A total of 48 SD rats were randomized into control (n = 8), model (n = 10), focus-side-EA (n = 10), non-acupoint-EA (n = 10), and healthy-side-EA ( n = 10) groups. AA model was established by subcutaneous injection of complete Freund's adjuvant (CFA, 50 μL) into the left hind paw. EA (4-16 Hz, 0.5-1.5 V) was applied to “Huantiao” (环跳 GB 30) and“Yanglingquan” (阳陵泉 GB 34) on the focus or healthy side and non-acupoints for 30 min. Non-acupoints used were the two sites 5 mm to GB 30 and GB 34 on the healthy side. The topical MOR IR-positive fibers in the dermal and subcutaneous tissues of the focus was stained with immunohistochemical method. The severity of pain was detected by foot (anklejoint)-bending test. Results: Compared with model group, the “foot-bending test” score decreased significantly in focus-side-EA group on the 9^th and 11^th day (P〈 0.05) and in non-acupoint-EA group on the 8^th, 9^th and 11thd after injection of CFA (P 〈 0.05), indicating that EA of bilateral GB 30 and GB 34 and non-acupoints all can relieve pain. From the 13^th day on, no significant differences were found in “foot-bending test” scores among the 3 EA groups and model group (P 〉0.05). In comparison with control group, the area values of MOR IR-positive nerve fibers in the focus tissue were significantly higher in 3 EA groups (P 〈 0.05). The area values of MOR IR-positive nerve fibers in the focus in model group and 3 EA groups were significant higher than that in control group (P〈 0.05). Compared with model group, the area values of MOR IR-positive fibers in focus-side-EA group and healthy-side-EA group increased significantly (P 〈 0.05); while those of MOR IR-positive fibers in non-acupoint-EA group and healthy-side-EA group were significantly lower than that in focus-side-EA group ( P 〈 0.05 ), and no significant differences were found among model group, healthy-side-EA group and non-acupoint-EA group in the area of MOR IR-positive fibers (P 〉0.05), indicating a stronger effect of EA of acupoints on the focus side. Conclusion: EA of GB 30 and GB 34 can relieve inflammatory pain and up-regulate the expression of MOR IR-positive fibers in the focal skin tissues in AA rats, exerting anti-inflammatory and analgesic effects.展开更多
OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine o...OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine on c AMP-dependent protein kinase A(PKA) activity in CHO cells expressing μ-,κ-,δ-and ORL1 receptors.In addition,we further examined its analgesic effect in vivo.METHODS The effect of thienorphine on cA MP-dependent PKA redistribution and cA MP inhibition were analyzed in CHO-PKAcatEGFP cells.PKA redistribution assays in CHO-PKAcatEGFP cells stably expressing μ-,κ-,δ-and ORL1 receptors were analyzed by high-throughput screening system to elucidate the efficacy of agonists or antagonists on opioid receptors.Moroever,the antinociceptive effects of thienorphine in vivo were examined using hot plate test.RESULTS Briefly,the maximum inhibition of thienorphine on PKA activity was about 36%,100%,100%and 12% in CHO-μ/κ/δ/ORL1-PKAcatE GFP cel s,respectively.In addition,thienorphine concentrationdependently inhibited the PKA activity with EC50 value of(22.7±18.1) nmol·L^(-1) in CHO-κ-PKAcatE GFP cels and(12.4±7.7) nmol·L^(-1) in CHO-δ-PKAcatE GFP cells.Thienorphine induced approximately 50%antinociceptive effect in mice lacking μ receptors compared to their wild-type controls(P<0.05).Also,the κ and δ selective antagonist nor-binaltorphimine,naltrindole decreased approximately 50%-60% in % MPE of theinorphine in μ-KO mice,respectively.The ORL1 receptor selective antagonist J113397 had no effect in %MPE of theinorphine in μ-KO mice.CONCLUSION Thienorphine induces analgesia through bindingκ-and δ-,or by partially binding μ-opioid receptor,thus further regulating the cAMP-PKA activity.Therefore,thienorphine may be used in acute or chronic pain with minimal addictive potential.展开更多
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Background Opioid switching is a therapeutic maneuver to improve analgesic response and/or reduce adverse side effects although the underlying mechanisms remain unknown.The μ-opioid receptor (MOR) has an important ...Background Opioid switching is a therapeutic maneuver to improve analgesic response and/or reduce adverse side effects although the underlying mechanisms remain unknown.The μ-opioid receptor (MOR) has an important role in mediating the actions of morphine and other analgesic agents.This study is aimed at exploring the changes of MOR in the periaqueductal gray (PAG) in rats when morphine is substituted for equianalgesic fentanyl.Methods Forty rats were randomly assigned to five treatment groups:7 days normal saline group (N group),7 days fentanyl group (F group),7 days morphine group (M group),7 days morphine and 7 days fentanyl-switching group (MF group),and 14 days morphine group (MM group).Rats repeatedly received subcutaneous injections of morphine sulfate (10 mg/kg) or equianalgesic fentanyl sulfate (0.1 mg/kg) twice daily.Rats' antinociceptive response to thermal pain was evaluated by the tail flick latency assay.MOR mRNA and protein expression in the PAG were measured using RT-PCR and Western blotting analyses respectively.Results This study showed that after morphine was substituted with fentanyl on day 8,the tail flick latency (TFL) increased from (3.9±0.4) seconds to (11.4±0.4) seconds.The results also demonstrated that both MOR mRNA and protein expression in the PAG of rats in the MF group were less than that in the M group (P〈0.05) but more than that in MM group (P〈0.05).Conclusions Equianalgesic fentanyl was still antinociceptive effective in rats with morphine tolerance,which may be due to the switching from morphine to fentanyl attenuating the decline of MOR expression in the PAG of rats.展开更多
Non-steroidal anti-inflammatory drugs(NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-indu...Non-steroidal anti-inflammatory drugs(NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs(aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase(SOD) and glutathione peroxidase(GPx) activities and decreased i NOS activity in stomach. The m RNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress.展开更多
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity(OIH)and analgesic tolerance.Among the different forms of OIH and tolerance,the opioid receptors and cell types mediating...The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity(OIH)and analgesic tolerance.Among the different forms of OIH and tolerance,the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved.Here we demonstrated that the loss of peripheralμ-opioid receptors(MORs)or MOR-expressing neurons attenuated thermal tolerance,but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance.To confirm this result,we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons.Consistent with the behavioral results,peripheral MOR loss did not prevent the opening of Aβmechanical allodynia pathways in the spinal dorsal horn.Therefore,the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance.Future studies should focus more on central mechanisms.展开更多
Background:μ-opioid receptor agonists(MORAs)are indispensable for analgesia in bladder cancer(BC)patients,both during surgery and for chronic pain treatment.Whether MORAs affect BC progression and metastasis remains ...Background:μ-opioid receptor agonists(MORAs)are indispensable for analgesia in bladder cancer(BC)patients,both during surgery and for chronic pain treatment.Whether MORAs affect BC progression and metastasis remains largely unknown.This study focused on the effects of MORAs on the formation of circulating tumor cells(CTCs)in BC and aimed to provide potential therapeutic targets,which would retain the pain-relieving effects of MORAs in BC patients without sacrificing their long-term prognosis.Methods:Different preclinical models were used to identify the effects of MORAs on the progression of BC.A novel immunocapture microfluidic chip was utilized to analyze whether MORAs affected the number of CTCs in mouse models and clinical BC patients.Bioinformatic analyses,total transcriptome sequencing,and molecular biology methods were then used to investigate the underlying mechanisms in these models and in BC cell lines.Results:Mouse models of hematogenous metastasis and in situ BC demonstrated that tumor metastasis was significantly increased after MORA treatment.A significant increase in the number of mesenchymal and/or epithelial CTCs was detected after MORA treatment in both the mouse models and clinical trial patients.Mechanistically,MORAs facilitated the formation of CTCs by activating the MOR/PI3K/AKT/Slug signaling pathway,hereby promoting the epithelialmesenchymal transition(EMT)of BC cells,as knockdown of MOR,Slug or blockade of PI3K inhibited the EMT process and CTC formation.Conclusion:MORAs promoted BC metastasis by facilitating CTC formation.The EMT-CTC axis could be targeted for preventive measures during MORA treatment to inhibit the associated tumormetastasis or recurrence in BC patients.展开更多
Background Preconditioning with repeated electroacupuncture (EA) could mimic ischemic preconditioning to induce cerebral ischemic tolerance in rats. The present study was designed to investigate whether mu(μ)-, d...Background Preconditioning with repeated electroacupuncture (EA) could mimic ischemic preconditioning to induce cerebral ischemic tolerance in rats. The present study was designed to investigate whether mu(μ)-, delta(δ)- or kappa(κ)-opioid receptors are involved in the neuroprotecUon induced by repeated EA preconditioning. Methods The rats were pretreated with naltrindole (NTI), nor-binaltorphimine (nor-BNI) or D-Phe-Cys-Tyr-D- Trp-Om-Thr-Pen-Thr-NH2 (CTOP), which is a highly selective δ-, κ- or μ-opioid receptor antagonist respectively, before each EA preconditioning (30 minutes per day, 5 days). Twenty-four hours after the last EA treatment, the middle cerebral artery occlusion (MCAO) was induced for 120 minutes. The brain infarct volume was determined with 2,3,5-tdphenyltetrazolium chloride staining at 24 hours after MCAO and compared with that in rats which only received EA preconditioning. In another experiment, the met-enkephalin-like immunoreactivity in rat brain was investigated by immunohistochemistry in both EA preconditioning and control rats. Results The EA preconditioning reduced brain infarct volume compared with the control rats (P=-0.000). Administration of both NTI and CTOP attenuated the brain infarct volume reduction induced by EA preconditioning, presenting with larger infarct volume than that in the EA preconditioning rats (P〈0.001). But nor-BNI administration did not block the infarct volume reduction induced by EA preconditioning, presenting with smaller infarct volume than the control group rats (P=-0.000). The number of met-enkephalin-like immunoreactivity positive neurons in the EA preconditioning rats was more than that of the control rats (P=-0.000). Conclusion Repeated EA preconditioning stimulates the release of enkephalins, which may bind 5- and p-opioid receptors to induce the tolerance against focal cerebral ischemia.展开更多
Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the...Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the use of thrombolytic and clot removal medicine,significant numbers of stroke patients are still left out without option for treatment.In this review,we summarize recent research work on the activation ofδ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury.Moreover,as activation ofδ-opioid receptor by a non-peptidicδ-opioid receptor agonist also modulates the expression,maturation and processing of amyloid precursor protein andβ-secretase activity,the potential role of these effects on ischemic stroke caused dementia or Alzheimer’s disease are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(Molecular design,catalysis and synthesis methods of novel fentanyl analogs active compounds)No.20872095
文摘Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.
文摘Human μ-opioid receptor (HμOR) with a tag of six consecutive histidines at its carboxyl terminus had been expressed in recombinant baculovirus infected Sf9 insect cells.The maximal binding capacity for the [3H] diprenorphine and [3H]ohmefentanyl (Ohm) were 9.1± 0.7 and 6.52±0.23 nmol/g protein, respectively. The [3H] diprenorphine or [3H] Ohm binding to the receptor expressed in Sf9 cells was strongly inhibited by μ-selective agonists [D-Ala2], N-methylPhe4, glyol5]enkephalin (DAGO), Ohm, and morphine, but neither by δ nor by K selective agonist. Na+ (100 mM) and GTP (50 μM) could reduce HμOR agonists etorphine and Ohm affinity binding to the overexpressed HμOR. μ-selective agonists DAGO and Ohm effectively stimulated [35S]GTPγS binding (EC50 = 2.7nM and 6.9 nM) and inhibited forskolin- stimulated cAMP accumulation (IC50 = 0.9 nM and 0.3 nM). The agonist-dependent effects could be blocked by opioid antagonist naloxone or by pretreatment of cells with pertussis toxin (PTX). These results demonstrated that HμOR overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins.
文摘The interaction of p-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. ,We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of 6-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-endocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrsfrom the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.
基金This study is subsidized by Chinese National Natural Science Foundation [Key Research Project (90209009) ]Hubei Natural Science Foundation (2002AB124)Foundation for Scientific Research of Huazhong University of Science and Technology
文摘Objective:To study the effect of μ-opioid receptor (MOR) expression in the inflammatory skin tissue and the effect of electroacupuncture (EA) on the topical immunoreaction (IR) of MOR positive fibers in adjuvant arthritic (AA) rats. Methods: A total of 48 SD rats were randomized into control (n = 8), model (n = 10), focus-side-EA (n = 10), non-acupoint-EA (n = 10), and healthy-side-EA ( n = 10) groups. AA model was established by subcutaneous injection of complete Freund's adjuvant (CFA, 50 μL) into the left hind paw. EA (4-16 Hz, 0.5-1.5 V) was applied to “Huantiao” (环跳 GB 30) and“Yanglingquan” (阳陵泉 GB 34) on the focus or healthy side and non-acupoints for 30 min. Non-acupoints used were the two sites 5 mm to GB 30 and GB 34 on the healthy side. The topical MOR IR-positive fibers in the dermal and subcutaneous tissues of the focus was stained with immunohistochemical method. The severity of pain was detected by foot (anklejoint)-bending test. Results: Compared with model group, the “foot-bending test” score decreased significantly in focus-side-EA group on the 9^th and 11^th day (P〈 0.05) and in non-acupoint-EA group on the 8^th, 9^th and 11thd after injection of CFA (P 〈 0.05), indicating that EA of bilateral GB 30 and GB 34 and non-acupoints all can relieve pain. From the 13^th day on, no significant differences were found in “foot-bending test” scores among the 3 EA groups and model group (P 〉0.05). In comparison with control group, the area values of MOR IR-positive nerve fibers in the focus tissue were significantly higher in 3 EA groups (P 〈 0.05). The area values of MOR IR-positive nerve fibers in the focus in model group and 3 EA groups were significant higher than that in control group (P〈 0.05). Compared with model group, the area values of MOR IR-positive fibers in focus-side-EA group and healthy-side-EA group increased significantly (P 〈 0.05); while those of MOR IR-positive fibers in non-acupoint-EA group and healthy-side-EA group were significantly lower than that in focus-side-EA group ( P 〈 0.05 ), and no significant differences were found among model group, healthy-side-EA group and non-acupoint-EA group in the area of MOR IR-positive fibers (P 〉0.05), indicating a stronger effect of EA of acupoints on the focus side. Conclusion: EA of GB 30 and GB 34 can relieve inflammatory pain and up-regulate the expression of MOR IR-positive fibers in the focal skin tissues in AA rats, exerting anti-inflammatory and analgesic effects.
基金National Natural Science Foundation of China(8147319481773709).
文摘OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine on c AMP-dependent protein kinase A(PKA) activity in CHO cells expressing μ-,κ-,δ-and ORL1 receptors.In addition,we further examined its analgesic effect in vivo.METHODS The effect of thienorphine on cA MP-dependent PKA redistribution and cA MP inhibition were analyzed in CHO-PKAcatEGFP cells.PKA redistribution assays in CHO-PKAcatEGFP cells stably expressing μ-,κ-,δ-and ORL1 receptors were analyzed by high-throughput screening system to elucidate the efficacy of agonists or antagonists on opioid receptors.Moroever,the antinociceptive effects of thienorphine in vivo were examined using hot plate test.RESULTS Briefly,the maximum inhibition of thienorphine on PKA activity was about 36%,100%,100%and 12% in CHO-μ/κ/δ/ORL1-PKAcatE GFP cel s,respectively.In addition,thienorphine concentrationdependently inhibited the PKA activity with EC50 value of(22.7±18.1) nmol·L^(-1) in CHO-κ-PKAcatE GFP cels and(12.4±7.7) nmol·L^(-1) in CHO-δ-PKAcatE GFP cells.Thienorphine induced approximately 50%antinociceptive effect in mice lacking μ receptors compared to their wild-type controls(P<0.05).Also,the κ and δ selective antagonist nor-binaltorphimine,naltrindole decreased approximately 50%-60% in % MPE of theinorphine in μ-KO mice,respectively.The ORL1 receptor selective antagonist J113397 had no effect in %MPE of theinorphine in μ-KO mice.CONCLUSION Thienorphine induces analgesia through bindingκ-and δ-,or by partially binding μ-opioid receptor,thus further regulating the cAMP-PKA activity.Therefore,thienorphine may be used in acute or chronic pain with minimal addictive potential.
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘Background Opioid switching is a therapeutic maneuver to improve analgesic response and/or reduce adverse side effects although the underlying mechanisms remain unknown.The μ-opioid receptor (MOR) has an important role in mediating the actions of morphine and other analgesic agents.This study is aimed at exploring the changes of MOR in the periaqueductal gray (PAG) in rats when morphine is substituted for equianalgesic fentanyl.Methods Forty rats were randomly assigned to five treatment groups:7 days normal saline group (N group),7 days fentanyl group (F group),7 days morphine group (M group),7 days morphine and 7 days fentanyl-switching group (MF group),and 14 days morphine group (MM group).Rats repeatedly received subcutaneous injections of morphine sulfate (10 mg/kg) or equianalgesic fentanyl sulfate (0.1 mg/kg) twice daily.Rats' antinociceptive response to thermal pain was evaluated by the tail flick latency assay.MOR mRNA and protein expression in the PAG were measured using RT-PCR and Western blotting analyses respectively.Results This study showed that after morphine was substituted with fentanyl on day 8,the tail flick latency (TFL) increased from (3.9±0.4) seconds to (11.4±0.4) seconds.The results also demonstrated that both MOR mRNA and protein expression in the PAG of rats in the MF group were less than that in the M group (P〈0.05) but more than that in MM group (P〈0.05).Conclusions Equianalgesic fentanyl was still antinociceptive effective in rats with morphine tolerance,which may be due to the switching from morphine to fentanyl attenuating the decline of MOR expression in the PAG of rats.
基金supported by the grants from Postgraduates scientific research and innovation projects in Jiangsu Province(No:CXZZ12_0124)the Fundamental Research Funds for the Central Universities
文摘Non-steroidal anti-inflammatory drugs(NSAIDs) induce tissue damage and oxidative stress in animal models of stomach damage. In the present study, the protective effects of wheat peptides were evaluated in a NSAID-induced stomach damage model in rats. Different doses of wheat peptides or distilled water were administered daily by gavage for 30 days before the rat stomach damage model was established by administration of NSAIDs(aspirin and indomethacin) into the digestive tract twice. The treatment of wheat peptides decreased the NSAID-induced gastric epithelial cell degeneration and oxidative stress and NO levels in the rats. Wheat peptides significantly increased the superoxide dismutase(SOD) and glutathione peroxidase(GPx) activities and decreased i NOS activity in stomach. The m RNA expression level of μ-opioid receptor was significantly decreased in wheat peptides-treated rats than that in in the control rats. The results suggest that NSAID drugs induced stomach damage in rats, wchih can be prevented by wheat peptides. The mechanisms for the protective effects were most likely through reducing NSAID-induced oxidative stress.
基金supported by grants from the Ministry of Science and Technology of China(2021ZD0203302)the National Natural Science Foundation of China(32170996)+4 种基金Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions(2021SHIBS0002)the Guangdong Science and Technology Committee(2019A1515010041,A2021319)the Shenzhen Innovation Committee of Science and Technology(ZDSYS20200811144002008)the Natural Science Foundation of Shenzhen University General Hospital(SUGH2018QD024)the Basic Research Project of Shenzhen Science and Technology Innovation Commission(JCYJ20210324100206017).
文摘The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity(OIH)and analgesic tolerance.Among the different forms of OIH and tolerance,the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved.Here we demonstrated that the loss of peripheralμ-opioid receptors(MORs)or MOR-expressing neurons attenuated thermal tolerance,but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance.To confirm this result,we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons.Consistent with the behavioral results,peripheral MOR loss did not prevent the opening of Aβmechanical allodynia pathways in the spinal dorsal horn.Therefore,the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance.Future studies should focus more on central mechanisms.
基金National Natural Science Foundation of China,Grant/Award Numbers:82171177,82173076Shanghai Science and Technology Committee Foundation,Grant/Award Number:19ZR1430600+6 种基金Clinical Research Plan of Shanghai Hospital Development Center,Grant/Award Number:SHDC2020CR4062Key Specialty Construction Project of Pudong Health and Family Planning Commission of Shanghai,Grant/Award Number:PWZxq2017-06Shanghai Municipal Key Clinical Specialty,Grant/Award Number:shslczdzk03601Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation,Grant/Award Number:20DZ2254200Shanghai 2021“Science and Technology Innovation Action Plan”domestic science and technology cooperation project,Grant/Award Number:21015801500Innovative research team of high-level local universities in Shanghai,Grant/Award Number:SHSMU-ZLCX20212601STI2030-Major Projects,Grant/Award Number:2022ZD0206200。
文摘Background:μ-opioid receptor agonists(MORAs)are indispensable for analgesia in bladder cancer(BC)patients,both during surgery and for chronic pain treatment.Whether MORAs affect BC progression and metastasis remains largely unknown.This study focused on the effects of MORAs on the formation of circulating tumor cells(CTCs)in BC and aimed to provide potential therapeutic targets,which would retain the pain-relieving effects of MORAs in BC patients without sacrificing their long-term prognosis.Methods:Different preclinical models were used to identify the effects of MORAs on the progression of BC.A novel immunocapture microfluidic chip was utilized to analyze whether MORAs affected the number of CTCs in mouse models and clinical BC patients.Bioinformatic analyses,total transcriptome sequencing,and molecular biology methods were then used to investigate the underlying mechanisms in these models and in BC cell lines.Results:Mouse models of hematogenous metastasis and in situ BC demonstrated that tumor metastasis was significantly increased after MORA treatment.A significant increase in the number of mesenchymal and/or epithelial CTCs was detected after MORA treatment in both the mouse models and clinical trial patients.Mechanistically,MORAs facilitated the formation of CTCs by activating the MOR/PI3K/AKT/Slug signaling pathway,hereby promoting the epithelialmesenchymal transition(EMT)of BC cells,as knockdown of MOR,Slug or blockade of PI3K inhibited the EMT process and CTC formation.Conclusion:MORAs promoted BC metastasis by facilitating CTC formation.The EMT-CTC axis could be targeted for preventive measures during MORA treatment to inhibit the associated tumormetastasis or recurrence in BC patients.
基金the National Natural Science Foundation of China(No.30471664).
文摘Background Preconditioning with repeated electroacupuncture (EA) could mimic ischemic preconditioning to induce cerebral ischemic tolerance in rats. The present study was designed to investigate whether mu(μ)-, delta(δ)- or kappa(κ)-opioid receptors are involved in the neuroprotecUon induced by repeated EA preconditioning. Methods The rats were pretreated with naltrindole (NTI), nor-binaltorphimine (nor-BNI) or D-Phe-Cys-Tyr-D- Trp-Om-Thr-Pen-Thr-NH2 (CTOP), which is a highly selective δ-, κ- or μ-opioid receptor antagonist respectively, before each EA preconditioning (30 minutes per day, 5 days). Twenty-four hours after the last EA treatment, the middle cerebral artery occlusion (MCAO) was induced for 120 minutes. The brain infarct volume was determined with 2,3,5-tdphenyltetrazolium chloride staining at 24 hours after MCAO and compared with that in rats which only received EA preconditioning. In another experiment, the met-enkephalin-like immunoreactivity in rat brain was investigated by immunohistochemistry in both EA preconditioning and control rats. Results The EA preconditioning reduced brain infarct volume compared with the control rats (P=-0.000). Administration of both NTI and CTOP attenuated the brain infarct volume reduction induced by EA preconditioning, presenting with larger infarct volume than that in the EA preconditioning rats (P〈0.001). But nor-BNI administration did not block the infarct volume reduction induced by EA preconditioning, presenting with smaller infarct volume than the control group rats (P=-0.000). The number of met-enkephalin-like immunoreactivity positive neurons in the EA preconditioning rats was more than that of the control rats (P=-0.000). Conclusion Repeated EA preconditioning stimulates the release of enkephalins, which may bind 5- and p-opioid receptors to induce the tolerance against focal cerebral ischemia.
基金supported by the National Institute of Neurological Disorders and Stroke under research grant NS088084(to HW)
文摘Ischemic stroke is a global epidemic condition due to an inadequate supply of blood and oxygen to a specific area of brain either by arterial blockage or by narrowing of blood vessels.Despite having advancement in the use of thrombolytic and clot removal medicine,significant numbers of stroke patients are still left out without option for treatment.In this review,we summarize recent research work on the activation ofδ-opioid receptor as a strategy for treating ischemic stroke-caused neuronal injury.Moreover,as activation ofδ-opioid receptor by a non-peptidicδ-opioid receptor agonist also modulates the expression,maturation and processing of amyloid precursor protein andβ-secretase activity,the potential role of these effects on ischemic stroke caused dementia or Alzheimer’s disease are also discussed.