Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ...Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.展开更多
The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notab...The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notable safety and high energy density,particularly in their single-crystal type.Nevertheless,the industrial application of the LNMO CAMs is severely inhibited due to the interfacial deterioration and corrosion under proton-rich and high-voltage conditions.This study successfully designed and synthesized two typical types of crystal facets-exposed single-crystal LNMO CAMs.By tracking the electrochemical deterioration and chemical corrosion evolution,this study elucidates the surface degradation mechanisms and intrinsic instability of the LNMO,contingent upon their crystal facets.The(111)facet,due to its elevated surface energy,is found to be more susceptible to external attack compared to the(100)and(110)facets.Our study highlights the electrochemical corrosion stability of crystal plane engineering for spinel LNMO CAMs.展开更多
2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)b...2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.展开更多
Based on the theory of crystallization,a solvent-free solid-liquid phase crystallization method called solid-melt crystallization was designed to prepare energetic coordination polymers.Two target compounds[Cu(NPyz)_(...Based on the theory of crystallization,a solvent-free solid-liquid phase crystallization method called solid-melt crystallization was designed to prepare energetic coordination polymers.Two target compounds[Cu(NPyz)_(4)NO_(3)]·NO_(3)(ECPs-1)and Cu(NPyz)_(4)(ClO_(4))_(2)(ECCs-2)were prepared through programmed heating and cooling by using 4-nitropyrazole(NPyz),(Cu(NO_(3))_(2)·5H_(2)O and Cu(ClO_(4))_(2)·5H_(2)O) as raw materials.In addition,crystallization pre-experiments and annealing experiments also verified the feasibility of the method.Their structures were confirmed by IR,elemental analysis,single-crystal X-ray diffraction and powder X-ray diffraction.The physicochemical properties and sensitivity test results showed that ECCs-2 has better thermal stability(T_(d)=221℃),while ECPs-1 is less sensitive to mechanical stimuli(IS=12 J,FS=240 N).Calculations based on EXPLO5 and the Kamlet-Jacobs equation showed that ECCs-2 has more considerable detonation performance(P=25.2 GPa,D=7.5 km/s).In comparison,the more intuitive results from the HN test,flame test,thermal resistance test and lead plate explosion test revealed that ECCs-2 has an“acceptable”detonation performance.The laser detonation test also showed that ECCs-2 is a promising excellent laser detonation material(E=408 mJ,P=24 W,τ=17 ms).展开更多
水热法合成了一个无机-有机杂化的NH_(4)[Cu_(3)^(I)(C_(10)H_(8)N_(2))_(3)Mo_(8)O_(26)]化合物,通过元素分析和单晶X-射线衍射进行了表征。化合物为三斜晶系,P1空间群,晶胞参数a=1.08763(9)nm,b=1.12674(10)nm,c=1.13067(10)nm,α=68....水热法合成了一个无机-有机杂化的NH_(4)[Cu_(3)^(I)(C_(10)H_(8)N_(2))_(3)Mo_(8)O_(26)]化合物,通过元素分析和单晶X-射线衍射进行了表征。化合物为三斜晶系,P1空间群,晶胞参数a=1.08763(9)nm,b=1.12674(10)nm,c=1.13067(10)nm,α=68.4820(10)°,β=83.523(2)°,γ=64.4180(10)°,V=1.16095(2)nm^(3),Z=1,Dc=2.661 g/cm^(3),Mr=1860.73,μ(MoKα)=35.22 cm^(-1),F(000)=888,R=0.0478,wR=0.099。化合物的结构包含2个结晶学上独立的铜原子、不连续的多氧阴离子β-[Mo_(8)O_(2)6]4-和无限扩展的[Cu I(C_(10)H_(8)N_(2))]链。每一个铜原子为类似的{CuN_(2)}配位模式,被4,4’-联吡啶连接成一维沿a轴方向的[Cu(C 10 H 8 N 2)]+链。分子结构中存在氢键和π…π作用。对化合物的热稳定性、荧光性质也进行了研究。展开更多
The thermal lensing effect generated in an end-pumped lightly doped Nd:GdVO4 crystal was found to be considerably weaker than that in Nd:YVO4 having the same Nd3+ concentration. Consequently, the laser performance of ...The thermal lensing effect generated in an end-pumped lightly doped Nd:GdVO4 crystal was found to be considerably weaker than that in Nd:YVO4 having the same Nd3+ concentration. Consequently, the laser performance of Nd:GdVO4 at high pump powers over 20 W was found to be superior to that of Nd:YVO4. TEM00 mode cw radiation of 14.3 W at 1.06μm was achieved with an optical conversion efficiency of 55%, and average slope efficiency of 62%.展开更多
基金financial support from various entities,including the Foundation of Anhui Science and Technology University[HCYJ202201]the Anhui Science and Technology University’s Student Innovation and Entrepreneurship Training Program[S202310879115,202310879053]+4 种基金the Key Project of Natural Science Research in Anhui Science and Technology University[2021ZRZD07]the Chuzhou Science and Technology Project[2021GJ002]the Anhui Province Key Research and Development Program[202304a05020085]the Natural Science Research Project of Anhui Educational Committee[2023AH051877]The Opening Project of State Key Laboratory of Advanced Technology for Float Glass[2020KF06,2022KF06]。
文摘Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.
基金supported by the National Natural Science Foundation of China (52374311)the National Natural Science Foundation of Shaanxi (2022KXJ-146)+3 种基金the Fundamental Research Funds for the Central Universities (D5000230091)Open project of Shaanxi Laboratory of Aerospace Power (2022ZY2-JCYJ-01-09)full-depth-sea battery project (No.2020-XXXX-XX-246-00)the Youth Innovation Team of Shaanxi Universities。
文摘The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notable safety and high energy density,particularly in their single-crystal type.Nevertheless,the industrial application of the LNMO CAMs is severely inhibited due to the interfacial deterioration and corrosion under proton-rich and high-voltage conditions.This study successfully designed and synthesized two typical types of crystal facets-exposed single-crystal LNMO CAMs.By tracking the electrochemical deterioration and chemical corrosion evolution,this study elucidates the surface degradation mechanisms and intrinsic instability of the LNMO,contingent upon their crystal facets.The(111)facet,due to its elevated surface energy,is found to be more susceptible to external attack compared to the(100)and(110)facets.Our study highlights the electrochemical corrosion stability of crystal plane engineering for spinel LNMO CAMs.
文摘2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.
基金the projects of National Natural Science Foundation of China(Grant Nos.22175025 and 21905023)for their generous financial support.
文摘Based on the theory of crystallization,a solvent-free solid-liquid phase crystallization method called solid-melt crystallization was designed to prepare energetic coordination polymers.Two target compounds[Cu(NPyz)_(4)NO_(3)]·NO_(3)(ECPs-1)and Cu(NPyz)_(4)(ClO_(4))_(2)(ECCs-2)were prepared through programmed heating and cooling by using 4-nitropyrazole(NPyz),(Cu(NO_(3))_(2)·5H_(2)O and Cu(ClO_(4))_(2)·5H_(2)O) as raw materials.In addition,crystallization pre-experiments and annealing experiments also verified the feasibility of the method.Their structures were confirmed by IR,elemental analysis,single-crystal X-ray diffraction and powder X-ray diffraction.The physicochemical properties and sensitivity test results showed that ECCs-2 has better thermal stability(T_(d)=221℃),while ECPs-1 is less sensitive to mechanical stimuli(IS=12 J,FS=240 N).Calculations based on EXPLO5 and the Kamlet-Jacobs equation showed that ECCs-2 has more considerable detonation performance(P=25.2 GPa,D=7.5 km/s).In comparison,the more intuitive results from the HN test,flame test,thermal resistance test and lead plate explosion test revealed that ECCs-2 has an“acceptable”detonation performance.The laser detonation test also showed that ECCs-2 is a promising excellent laser detonation material(E=408 mJ,P=24 W,τ=17 ms).
文摘水热法合成了一个无机-有机杂化的NH_(4)[Cu_(3)^(I)(C_(10)H_(8)N_(2))_(3)Mo_(8)O_(26)]化合物,通过元素分析和单晶X-射线衍射进行了表征。化合物为三斜晶系,P1空间群,晶胞参数a=1.08763(9)nm,b=1.12674(10)nm,c=1.13067(10)nm,α=68.4820(10)°,β=83.523(2)°,γ=64.4180(10)°,V=1.16095(2)nm^(3),Z=1,Dc=2.661 g/cm^(3),Mr=1860.73,μ(MoKα)=35.22 cm^(-1),F(000)=888,R=0.0478,wR=0.099。化合物的结构包含2个结晶学上独立的铜原子、不连续的多氧阴离子β-[Mo_(8)O_(2)6]4-和无限扩展的[Cu I(C_(10)H_(8)N_(2))]链。每一个铜原子为类似的{CuN_(2)}配位模式,被4,4’-联吡啶连接成一维沿a轴方向的[Cu(C 10 H 8 N 2)]+链。分子结构中存在氢键和π…π作用。对化合物的热稳定性、荧光性质也进行了研究。
基金the National 863 High Technical Program under Grant No.863-715-001-0030.
文摘The thermal lensing effect generated in an end-pumped lightly doped Nd:GdVO4 crystal was found to be considerably weaker than that in Nd:YVO4 having the same Nd3+ concentration. Consequently, the laser performance of Nd:GdVO4 at high pump powers over 20 W was found to be superior to that of Nd:YVO4. TEM00 mode cw radiation of 14.3 W at 1.06μm was achieved with an optical conversion efficiency of 55%, and average slope efficiency of 62%.