The solubility of trans-1,2-cyclohexanediol in water, methyl acetate, acetic ester, propyl acetate, butyl acetate, methyl acrylate, ethyl acrylate, 2-pentanone and acetoacetic ester was measured at temperatures rangin...The solubility of trans-1,2-cyclohexanediol in water, methyl acetate, acetic ester, propyl acetate, butyl acetate, methyl acrylate, ethyl acrylate, 2-pentanone and acetoacetic ester was measured at temperatures ranging from about 300 K to 330 K, using a modification of the experimental technique of laser monitoring observation system. The solubilities were calculated by λh method, in which new parameters were introduced to express the activity coefficients of trans-1,2-cyclohexanediol, and determined from the experimental data. The new parameters provide good calculated results. The experimental data were also correlated with a simple model, and results were compared with present λh model.展开更多
Using a laser observation technique,the solubilities of trans-1,2-cyclohexanediol in butyl acetate+wa- ter were measured at the temperature range from 298.15K to 323.15K by a synthetic method at atmospheric pres- sure...Using a laser observation technique,the solubilities of trans-1,2-cyclohexanediol in butyl acetate+wa- ter were measured at the temperature range from 298.15K to 323.15K by a synthetic method at atmospheric pres- sure.It is shown that the solubilities of trans-1,2-cyclohexanediol in butyl acetate+water were affected greatly by the proportion of butyl acetate and water,and presented maximum value at given temperature.The UNIFAC model was used to correlate the experimental data.The average relative deviation(ARD)between experimental and calculated values is 3.03%.展开更多
The thermodynamic properties of different geometric structures of 1,2-cyclohexanediol which were rarely reported in literature, such as combustion enthalpy, formation enthalpy, melting enthalpy and heat ca-pacities, w...The thermodynamic properties of different geometric structures of 1,2-cyclohexanediol which were rarely reported in literature, such as combustion enthalpy, formation enthalpy, melting enthalpy and heat ca-pacities, were determined by NETZSCH DSC 204 Scanning Calorimeter. The relationship between the melting point and the composition for the mixture system of cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol was investigated and corresponding phase diagram was obtained. 'The melting enthalpies of both cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol are 20.265kJ·mol-1 and 16.368kJ·mol-1 respectively. The standard combustion enthalpies of cia- and trans-1,2-cyclohexaneddiol were determined by calorimeter. They are respec-tively -3507.043 kJ·mol-1 and - 3497.8 kJ·mol-1 at 298.15 K.The standard formation enthalpies are respectively 568.997 kJ·mol-1 and 578.240 kJ·mol-1 for cia- and trans -1,2-cyclohexaneddiol.展开更多
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
基金Supported by the Natural Science Foundation of Henan Province (No. 0211020800)
文摘The solubility of trans-1,2-cyclohexanediol in water, methyl acetate, acetic ester, propyl acetate, butyl acetate, methyl acrylate, ethyl acrylate, 2-pentanone and acetoacetic ester was measured at temperatures ranging from about 300 K to 330 K, using a modification of the experimental technique of laser monitoring observation system. The solubilities were calculated by λh method, in which new parameters were introduced to express the activity coefficients of trans-1,2-cyclohexanediol, and determined from the experimental data. The new parameters provide good calculated results. The experimental data were also correlated with a simple model, and results were compared with present λh model.
基金Supported by the Natural Science Foundation of Henan Province (No.0211020800).
文摘Using a laser observation technique,the solubilities of trans-1,2-cyclohexanediol in butyl acetate+wa- ter were measured at the temperature range from 298.15K to 323.15K by a synthetic method at atmospheric pres- sure.It is shown that the solubilities of trans-1,2-cyclohexanediol in butyl acetate+water were affected greatly by the proportion of butyl acetate and water,and presented maximum value at given temperature.The UNIFAC model was used to correlate the experimental data.The average relative deviation(ARD)between experimental and calculated values is 3.03%.
基金Natural Science Foundation of Henan Province(No.0211020800)
文摘The thermodynamic properties of different geometric structures of 1,2-cyclohexanediol which were rarely reported in literature, such as combustion enthalpy, formation enthalpy, melting enthalpy and heat ca-pacities, were determined by NETZSCH DSC 204 Scanning Calorimeter. The relationship between the melting point and the composition for the mixture system of cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol was investigated and corresponding phase diagram was obtained. 'The melting enthalpies of both cis-1,2-cyclohexanediol and trans-1,2-cyclohexanediol are 20.265kJ·mol-1 and 16.368kJ·mol-1 respectively. The standard combustion enthalpies of cia- and trans-1,2-cyclohexaneddiol were determined by calorimeter. They are respec-tively -3507.043 kJ·mol-1 and - 3497.8 kJ·mol-1 at 298.15 K.The standard formation enthalpies are respectively 568.997 kJ·mol-1 and 578.240 kJ·mol-1 for cia- and trans -1,2-cyclohexaneddiol.
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。