Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), sca...Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.展开更多
A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst...A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.展开更多
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-...Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35°C, with an initial pH of 7.0–7.2 and a starting inoculum of 10%(by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L?1 within 244h and that it had a high tolerance potential of up to 440mg·L?1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2–350mg·L?1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.展开更多
The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the...The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.展开更多
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined ...The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,展开更多
Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-C...Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-CP was carried out under anaerobic conditions in Erlenmeyer flasks at 35℃, with an initial pH of 7.0—7.2 and a starting inoculum of 10% by volume. The results showed that, under the above-mentioned con- ditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L-1 within 244h and that it had a high tolerance potential of up to 440mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations 2.2—350mg·L-1, using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.展开更多
In this work, a new immobilization method based on dopamine(DA) self-polymerization was developed for laccase immobilization on magnetic nanoparticles(Fe_3O_4 NPs). To optimize the immobilization condition including r...In this work, a new immobilization method based on dopamine(DA) self-polymerization was developed for laccase immobilization on magnetic nanoparticles(Fe_3O_4 NPs). To optimize the immobilization condition including reaction pH, DA concentration and enzyme concentration, a central composite response surface method was applied. The optimal condition was determined as p H value of 5.92, laccase concentration of 0.25 mg mL^(-1) and DA concentration of 12.74 mg mL^(-1), under which a high enzyme activity recovery of 88.17% was obtained.By comparing with free laccase, the stabilities of immobilized laccase towards p H, thermostability, storage were enhanced significantly.Approximately 60% of relative activity for immobilized laccase was remained after being incubated for 6 h at 50℃, but the free laccase only remained 25%. After 40 days of storage at 4℃, the laccase immobilized by DA kept about 89% of its original activity, but the free laccase only retained 48%. After recycled 10 times, the relative activity of immobilized laccase still retained 70%. The immobilized laccase was then applied to catalyze the degradation of 4-chlorophenol(4-CP), 86% percentage of 4-CP was removed within 2 h. After degraded 10 times, the relative activity of immobilized laccase still remained 64% of its initial activity, which exhibits an excellent reusability and operational stability.展开更多
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica...A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.展开更多
The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI...The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.展开更多
4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimen...4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.展开更多
This paper aims to create visible light driven ternary photocatalysts using zinc oxide(ZnO),cerium(IV)oxide(CeO_(2)),and carbon xerogel(CX) as constituent materials.The use of CeO_(2) is based on the creation of direc...This paper aims to create visible light driven ternary photocatalysts using zinc oxide(ZnO),cerium(IV)oxide(CeO_(2)),and carbon xerogel(CX) as constituent materials.The use of CeO_(2) is based on the creation of direct-Z-scheme heterojunctions with the ZnO and the consequent diminishing of charge recombination,whereas the carbon xerogel inclusion is predicted to minimize bandgap energy,decrease electro n-hole reco mbination,and boost specific surface area.Furthermo re,the choice of the black-wattle tannin as a carbonaceous precursor was targeted at the development of an environmentally friendly and affordable composite.The existence of the hexagonal phase of zinc oxide and cubic structure of the cerium(IV) oxide in the ternary material was confirmed by X-ray diffractometry and X-ray photoelectron spectroscopy,with the latter also suggesting chemical bonding between the ZnO and the CX due to the creation of zinc oxycarbide complexes.The inclusion of the carbon xerogel provokes a significant modification in the morphology of the ternary material,resulting in an increased surface area and smaller particle aggregates.The CX/ZnO-CeO_(2) ternary composite obtains the highest photocatalytic efficiency among all the materials studied,degrading 100% of 4-chlorophenol under simulated sunlight and 68% under visible radiation,after 5 h.The increased photocatalytic activity can be attributed to the formation of direct Z-scheme heterojunctions between the semiconductors,higher visible light response,and higher specific surface area,as evidenced by the results obtained by active radical scavenging,chronoamperometry,diffuse reflectance spectroscopy,and N_(2) adsorption-desorption isotherms.展开更多
基金Project supported by the Scientific Research Foundation of Nanjing University of Information Science and Technology, ChinaProject (2010490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, China
文摘Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.
基金supported by the National Natural Science Foundation of China(51268001)~~
文摘A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
基金Supported by the National Natural Science Foundation of China (No.20336030) and the Natural Science Foundation of Tianjin(No.05YFJZJC 00500).
文摘Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol (4-CP) was carried out under anaerobic conditions in Erlenmeyer flasks at 35°C, with an initial pH of 7.0–7.2 and a starting inoculum of 10%(by volume). The results showed that, under the above-mentioned conditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L?1 within 244h and that it had a high tolerance potential of up to 440mg·L?1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations (2.2–350mg·L?1), using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.
基金Supported by the science and Technology Innovative Talents Foundation of China (2006RFQXS070), the Youth Academic Cadreman Project of Heilongjiang Province (1152G068), Scientific Research Fund of Heilongjiang Province (11523063) and the Science Foundation for Post Doctorate of China (20070410268).
文摘The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.
基金The project partially supported by the Project of Key Science and Technology of Education Ministry (00250), the Natural ScienceFoundation of Gansu Province (3ZS041-A25-028), and the Project of KJCXGC-01, NWNU, China
文摘The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,
基金the National Natural Science Foundation of China (No.20336030) the Natural Science Foundation of Tianjin(No.05YFJZJC 00500)
文摘Candida albicans PDY-07 was isolated from activated sludge under anaerobic conditions and identified as a member belonging to the genus Candida. Pure culture of C. albicans PDY-07, biodegradation of 4-chlorophenol 4-CP was carried out under anaerobic conditions in Erlenmeyer flasks at 35℃, with an initial pH of 7.0—7.2 and a starting inoculum of 10% by volume. The results showed that, under the above-mentioned con- ditions, C. albicans PDY-07 could thoroughly biodegrade 4-CP up to a concentration of 300mg·L-1 within 244h and that it had a high tolerance potential of up to 440mg·L-1 for 4-CP. With the increase in the initial concentrations of 4-CP, substrate inhibition was obviously enhanced. There was increased consumption of 4-CP, which was not assimilated by the cell for growth but was used to counteract the strong substrate inhibition. In addition, the cell growth and substrate-degradation kinetics of 4-CP as the sole source of carbon and energy for the strain in batch cultures were also investigated over a wide range of substrate concentrations 2.2—350mg·L-1, using the proposed cell growth and degradation kinetic models. The results recorded from these experiments showed that the proposed kinetic models adequately described the dynamic behavior of 4-CP biodegradation by C. albicans PDY-07.
基金support from the National Natural Science Foundation of China(Grant Nos.51378487,51425405,21376249,21336010)Youth Innovation Promotion Association,CAS(2014037)973 Program(2013CB733604)
文摘In this work, a new immobilization method based on dopamine(DA) self-polymerization was developed for laccase immobilization on magnetic nanoparticles(Fe_3O_4 NPs). To optimize the immobilization condition including reaction pH, DA concentration and enzyme concentration, a central composite response surface method was applied. The optimal condition was determined as p H value of 5.92, laccase concentration of 0.25 mg mL^(-1) and DA concentration of 12.74 mg mL^(-1), under which a high enzyme activity recovery of 88.17% was obtained.By comparing with free laccase, the stabilities of immobilized laccase towards p H, thermostability, storage were enhanced significantly.Approximately 60% of relative activity for immobilized laccase was remained after being incubated for 6 h at 50℃, but the free laccase only remained 25%. After 40 days of storage at 4℃, the laccase immobilized by DA kept about 89% of its original activity, but the free laccase only retained 48%. After recycled 10 times, the relative activity of immobilized laccase still retained 70%. The immobilized laccase was then applied to catalyze the degradation of 4-chlorophenol(4-CP), 86% percentage of 4-CP was removed within 2 h. After degraded 10 times, the relative activity of immobilized laccase still remained 64% of its initial activity, which exhibits an excellent reusability and operational stability.
文摘A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.
基金supported by the National Natural Science Foundation of China(51568049,51468043,21366024,21665018)the National Science Fund for Excellent Young Scholars(51422807)+2 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20171ACB21035)the Distinguished Youth Science Fund of Jiangxi Province(20162BCB23043)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515)~~
文摘The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.
基金Partly supported by the National Natural Science Foundation of China (No. 20176053)Academic Foundation of Zhejiang University of Technology (No. 20040004).
文摘4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.
基金Project supported by the Sao Paulo Research Foundation(FAPESP)(2018/10492-1,2018/16360-0,2007/08244-5,2007/54829-5,2017/18574-4,2017/10118-0,2014/50945-4)the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico(CNPq)(465571/2014-0,302874/2017-8,427452/2018-0)。
文摘This paper aims to create visible light driven ternary photocatalysts using zinc oxide(ZnO),cerium(IV)oxide(CeO_(2)),and carbon xerogel(CX) as constituent materials.The use of CeO_(2) is based on the creation of direct-Z-scheme heterojunctions with the ZnO and the consequent diminishing of charge recombination,whereas the carbon xerogel inclusion is predicted to minimize bandgap energy,decrease electro n-hole reco mbination,and boost specific surface area.Furthermo re,the choice of the black-wattle tannin as a carbonaceous precursor was targeted at the development of an environmentally friendly and affordable composite.The existence of the hexagonal phase of zinc oxide and cubic structure of the cerium(IV) oxide in the ternary material was confirmed by X-ray diffractometry and X-ray photoelectron spectroscopy,with the latter also suggesting chemical bonding between the ZnO and the CX due to the creation of zinc oxycarbide complexes.The inclusion of the carbon xerogel provokes a significant modification in the morphology of the ternary material,resulting in an increased surface area and smaller particle aggregates.The CX/ZnO-CeO_(2) ternary composite obtains the highest photocatalytic efficiency among all the materials studied,degrading 100% of 4-chlorophenol under simulated sunlight and 68% under visible radiation,after 5 h.The increased photocatalytic activity can be attributed to the formation of direct Z-scheme heterojunctions between the semiconductors,higher visible light response,and higher specific surface area,as evidenced by the results obtained by active radical scavenging,chronoamperometry,diffuse reflectance spectroscopy,and N_(2) adsorption-desorption isotherms.