A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a hig...A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a high order single stage ∑△ modulator is also proposed. A new multistage comb filter is used for the front end decimation filter. The ∑△ A/D converter achieves a peak SNR of 96dB and a dynamic range of 96dB. The ADC was implemented in 0. 5μm 5V CMOS technology. The chip die area occupies only 4. 1mm × 2.4mm and dissipates 90mW.展开更多
A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and ...A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.展开更多
A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented witho...A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.展开更多
The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△A...The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.展开更多
This text has expounded the working principle of realizing A/D conversion that utilizes the timer within MCU and combinesthe technology of PWM. The design of hardware circuit, improved gradual approached trial arithme...This text has expounded the working principle of realizing A/D conversion that utilizes the timer within MCU and combinesthe technology of PWM. The design of hardware circuit, improved gradual approached trial arithmetic and relevant program design arediscussed in detail. And it has analyzed the resolution of A/D converter based on the technology of PWM, etc.展开更多
In this article,radiation effects and annealing characteristics of a bipolar analog-to-digital converter(ADC) are investigated in different biases and dose rates.The results show that ADC is sensitive to both the bias...In this article,radiation effects and annealing characteristics of a bipolar analog-to-digital converter(ADC) are investigated in different biases and dose rates.The results show that ADC is sensitive to both the bias and dose rate. Under high-dose-rate irradiation,the ADC functions well,while under low-dose-rate irradiation,the parameters of ADC change obviously at low dose level,and the damage is significant at zero bias.Combining the fringing field with the space charge model,the underlying mechanism for this response is discussed.展开更多
The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can ...The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can lead to significant issues.This paper reviews the development of high-power,reliable charging solutions by examining the converter topologies used in rectifiers and converters that transfer electricity from the grid to EV batteries.It covers technical details,ongoing developments,and challenges related to these topologies and control strategies.The integration of rapid charging stations has introduced various Power Quality(PQ)issues,such as voltage fluctuations,harmonic distortion,and supra-harmonics,which are discussed in detail.The paper also highlights the benefits of controlled EV charging and discharging,including voltage and frequency regulation,reactive power compensation,and improved power quality.Efficient energy management and control strategies are crucial for optimizing EV battery charging within microgrids to meet increasing demand.Charging stations must adhere to specific converter topologies,control strategies,and industry standards to function correctly.The paper explores microgrid architectures and control strategies that integrate EVs,energy storage units(ESUs),and Renewable Energy Sources(RES)to enhance performance at charging points.It emphasizes the importance of various RES-connected architectures and the latest power converter topologies.Additionally,the paper provides a comparative analysis of microgrid-based charging station architectures,focusing on energy management,control strategies,and charging converter controls.The goal is to offer insights into future research directions in EV charging systems,including architectural considerations,control factors,and their respective advantages and disadvantages.展开更多
The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development patte...The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.展开更多
文摘A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a high order single stage ∑△ modulator is also proposed. A new multistage comb filter is used for the front end decimation filter. The ∑△ A/D converter achieves a peak SNR of 96dB and a dynamic range of 96dB. The ADC was implemented in 0. 5μm 5V CMOS technology. The chip die area occupies only 4. 1mm × 2.4mm and dissipates 90mW.
文摘A 1.8V 8b 125Msample/s pipelined A/D converter is presented.Power efficiency is optimized by size scaling down scheme using low power single stage cascode amplifier with a gain boosted structure.Global clock tree and local generators are employed to avoid loss and overlap of clock period.The ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 49.5dB(7.9ENOB) for an input of 62MHz at full speed of 125MHz,consuming only 71mW.It is implemented in 0.18μm CMOS technology with a core area of 0.45mm 2.
文摘A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.
文摘The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.
文摘This text has expounded the working principle of realizing A/D conversion that utilizes the timer within MCU and combinesthe technology of PWM. The design of hardware circuit, improved gradual approached trial arithmetic and relevant program design arediscussed in detail. And it has analyzed the resolution of A/D converter based on the technology of PWM, etc.
文摘In this article,radiation effects and annealing characteristics of a bipolar analog-to-digital converter(ADC) are investigated in different biases and dose rates.The results show that ADC is sensitive to both the bias and dose rate. Under high-dose-rate irradiation,the ADC functions well,while under low-dose-rate irradiation,the parameters of ADC change obviously at low dose level,and the damage is significant at zero bias.Combining the fringing field with the space charge model,the underlying mechanism for this response is discussed.
文摘The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can lead to significant issues.This paper reviews the development of high-power,reliable charging solutions by examining the converter topologies used in rectifiers and converters that transfer electricity from the grid to EV batteries.It covers technical details,ongoing developments,and challenges related to these topologies and control strategies.The integration of rapid charging stations has introduced various Power Quality(PQ)issues,such as voltage fluctuations,harmonic distortion,and supra-harmonics,which are discussed in detail.The paper also highlights the benefits of controlled EV charging and discharging,including voltage and frequency regulation,reactive power compensation,and improved power quality.Efficient energy management and control strategies are crucial for optimizing EV battery charging within microgrids to meet increasing demand.Charging stations must adhere to specific converter topologies,control strategies,and industry standards to function correctly.The paper explores microgrid architectures and control strategies that integrate EVs,energy storage units(ESUs),and Renewable Energy Sources(RES)to enhance performance at charging points.It emphasizes the importance of various RES-connected architectures and the latest power converter topologies.Additionally,the paper provides a comparative analysis of microgrid-based charging station architectures,focusing on energy management,control strategies,and charging converter controls.The goal is to offer insights into future research directions in EV charging systems,including architectural considerations,control factors,and their respective advantages and disadvantages.
基金funded by“The Fourth Phase of 2022 Advantage Discipline Engineering-Control Science and Engineering”,grant number 4013000063.
文摘The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.